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ntroduction 

ent years, human-computer interaction (HCI) has 
many researchers’ interests, as it plays a significant 
 development of artificial intelligence. The HCI is the 
ow people interact with computers through interactive 
such as computer applications and user interfaces. 
, various communication channels, such as gestures, 
lectroencephalogram, electromyography, eye gaze, 
 been used in HCI systems to capture and understand 
tivities and intentions. Among these channels, the eye 
ecoming popular for its unique ability to naturally 
e human subject’s intention. An HCI system equipped 
gaze recognition is capable of identifying a human 
intention based on the subject’s eye gaze behavior in 
bot collaboration. As shown in Fig. 1, a human-robot 

collaboration system using eye gazes mainly consists of two 
stages: an eye-gaze-based HCI system and a robot operation 
platform. A human worker can remotely control a robotic arm 
to choose, deliver, and/or assemble tools and parts from a 
remote platform using an eye-gaze-based HCI system through 
a software interface. Webcam A in the first stage is set to 
capture the eye gazes of the human worker, and webcam B in 
the second stage is set to recognize tools and parts on the 
platform and provide the recognition results to the human 
worker through the software interface.  

In this paper, we mainly consider the first stage of the 
human-robot collaboration using eye gazes shown on the left 
side of Fig. 1, i.e., the eye gaze tracking and recognition in an 
HCI system using a webcam and a software interface. We 
propose an eye-gaze-based HCI system, which integrates and 
visualizes three tasks: real-time eye tracking and recognition, 
object recognition using an instance segmentation model, and 
tool-and-part selection using the recognized eye gazes. 
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Fig. 1. Human-robot collaboration using eye gazes.  

1.1. Related work 

Human-computer interaction (HCI) is a multidisciplinary 
field that studies the design, evaluation, and use of computer 
systems, with a focus on the interactions between people and 
computers using different communication channels, such as 
gestures, speech and eye gazes. Qi et. al. proposed an intelligent 
HCI system using surface EMG gesture signal and used linear 
discriminant analysis (LDA) and extreme learning machine 
(ELM) to improve gesture recognition efficiency and accuracy 
in HCI [1]. Chen et al. designed a software for HCI using 
dynamic gestures and verbal speech commands, and the 
software visualized the real-time recognition results of the 
gestures and speech of human subjects [2]. Eye gaze 
recognition was initially designed for observing people’s gaze 
behavior during reading tasks in HCI research [3]. Eye gaze 
recognition devices were usually placed on the top of 
computers so that they could recognize what users were doing 
with their eyes while performing different eye gazes. Kyung-
Nam et. al. conducted simple eye gaze tracking for HCI through 
calculating the location of the iris center of an eye [4]. Beymer 
designed a 3D model with information on the corneal ball, 
pupil, and fovea areas of the eyes to realize eye tracking and 
recognition of gaze direction for HCI [5]. Pai et. al. designed 
simple eye gaze recognition using EMG signals [6]. Later, Gee 
et. al. developed a flexible vision-based approach, which could 
estimate the direction of gaze from a single, monocular view of 
a face [7]. Wang et. al. proposed a system that supported HCIs 
with head poses, eye gazes, and body gestures, and their 
method achieved a large performance improvement on the 
most challenging database at that time [8]. Li et. al. introduced 
an approach named BayesGaze, which was used to determine 
the selected target given an eye gaze trajectory [9]. There are 
also other technologies designed to study eye gaze recognition 
through machine learning [10], deep learning [11], and virtual 
reality (VR) [12]. However, the necessity of complicated 
cameras and/or wearable glasses in tracking eye gazes, and the 
computational complexity of the eye gaze recognition model 
limits the real-time application of eye gaze recognition in HCI 
systems. In this paper, we propose an eye gaze tracking and 
recognition system through a webcam and effective image 

processing, which enables robust eye gaze tracking and 
accurate eye gaze recognition in real time. 

Recent theoretical developments have revealed that instance 
segmentation plays an important part in separating objects into 
different groups based on their shape and other attributes. 
Common solutions have been developed to realize instance 
segmentation tasks, such as Faster-R-CNN [13], Mask R-CNN 
[14], You Only Look Once (YOLO) [15], etc. However, the 
lack of visual end-to-end solutions in instance segmentation, 
such as the applications integrating the pre-trained instance 
segmentation models and visual interfaces, limits the 
application of the above approaches in different academic and 
industrial fields. Solutions without packaged models increase 
unpredictable difficulty and time cost in the debugging process, 
which compromises the compatible ability of the existing 
models to be effectively applied to different tasks. A standard 
visual end-to-end solution takes the instance segmentation 
from the beginning to the end. It delivers a complete functional 
solution without needing to obtain any assistance from a third 
party or the strong programming background of users. In this 
paper, we develop a visual end-to-end software interface by 
integrating the eye gaze tracking and recognition model and the 
instance segmentation model. The user only uses eye gazes to 
control the system to execute the instance segmentation task. 
The software interface simplifies and broadens the application 
of complex programming models. 

1.2. Contribution of this article 

This paper proposes a real-time HCI system using eye gaze 
and Mask R-CNN. An overview of the HRC system is depicted 
in Fig. 2, in which the system recognizes a user’s four types of 
eye gazes in real time, executes instance segmentation of tools 
and parts in an image, and enables the user to use eye gazes to 
select the segmented tools and parts through a visual end-to-
end software interface.  

The contributions of this paper are as follows: 
● This paper develops an eye gaze-based HCI system that 

enables natural and real-time interaction between a human 
user and a computer using one RGB camera by integrating 
multiple parallel tasks, including the real-time eye gaze 
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tracking and recognition, instance segmentation, and visual 
software interface operation. 

● An eye gaze recognition model is designed to use a RGB 
camera to capture, track and recognize eye movement in 
real-time.  

● An instance segmentation model is trained using the Mask 
R-CNN to recognize and segment tools and parts in one 
image. 

● A visual end-to-end software interface is designed to 
visualize the HCI system. The interface is packaged with the 
models of the eye gaze recognition and tool-and-part 
recognition and is completely controlled by the proposed 
eye gazes.  
 

 

Fig. 2. System overview. 

1.3. Organization of this article 

The rest of this paper is organized as follows: Section 2 
describes the design of the eye gaze tracking and recognition 
model. Section 3 illustrates the instance segmentation of tools 
and parts. Section 4 designs a visual end-to-end software 
interface by integrating the proposed eye gaze recognition and 
instance segmentation models into an intelligent HCI system. 
Experimental results are shown in Section 5. Section 6 presents 
the conclusion. 

2. Eye gaze recognition 

This section introduces our eye gaze tracking and 
recognition model. Section 2.1 introduces the model of eye 
detection and tracking, and Section 2.2 details of the real-time 
eye gaze recognition model. 

2.1. Eye detection and tracking 

Eye detection and tracking are the partial mission of face 
detection and tracking. The Dlib 68-point facial landmark 
detector is used for face detection and tracking, which is a pre-
trained facial landmark model capable of estimating the 
locations of 68 coordinates that can be mapped to facial 
structures (as shown in Fig. 3)  [16].  
 

 

Fig. 3. Dlib 68 facial landmarks. 

We first locate a human subject’s face in Fig. 4 (a) and map 
the Dlib 68-point facial landmark on the face. The facial 
landmark 𝐹௫,௬,௪,௛  is obtained, where the x and y denote the 
coordinates of the 68 landmarks of the face. The w and h denote 
the dimensions of the green rectangle shown in Fig. 4 (a), 
indicating the dimension of the face. After that, we shift the 
focus from the 68 facial landmarks to the 12 eye landmarks, 
i.e., landmarks 37-48 in Fig. 3, and extract the coordinates of 
the 12 landmarks of the left and right eyes in 𝐹௫,௬,௪,௛ as our 
regions of interest (ROI) and connect them with solid lines, as 
shown in Fig. 4 (b). 
 

  
(a) facial landmarks (b) eye landmarks 

Fig. 4. Location of face and eyes. 

2.2. Eye gaze recognition model 

As shown in Fig. 5, an eye composes of three main 
components: pupil, iris, and two side sclera. We focus on the 
pupil and iris areas’ locations, and design four eye gazes shown 
in Fig. 6 (a-d), including looking straight ahead, looking to the 
left, looking to the right, and blinking. The images in Fig. 6 (a-
d) are mirrored. The recognition idea is to use the sclera 
information to recognize the eye gazes shown in Fig. 6 (a-c) 
and use the distance between the eyelashes to recognize the eye 
gaze blinking shown in  Fig. 6 (d)  



886 H. Chen et al. / Manufacturing Letters 35 (2023) 883–894 

 

Fig. 5. Eye structure. 

 
(a) looking 

straight ahead 

 
(b) looking to 

the left 
(c) looking to 

the right 

 
(d) blinking 

Fig. 6. Four eye gazes. 

To recognize the eye gazes in Fig. 6 (a-c), i.e., looking 
straight ahead, looking to the left, and looking to the right, we 
propose a sclera-ROI-based method shown in Fig. 7 by 
splitting each eye into two components and calculating the 
visible sclera areas. Firstly, the eye landmark 𝐸௫,௬ is extracted 
from the facial landmark 𝐹௫,௬,௪,௛. Next, the eye region mapped 
by 𝐸௫,௬ is converted into grayscale and then into binary scale, 
in which only two color pixels exist, black (pixel value = 0, the 
iris and pupil regions) and white (pixel value = 1, the sclera 
region). After that, the number of white pixels, i.e., the sclera 
region, is counted on both sides of an individual eye as 𝑊௟௦  and 
𝑊௥௦ , where 𝑙𝑠 and 𝑟𝑠 represent the left and right sides of an 
eye, respectively. 

  

Fig. 7. Feature extraction of the sclera aera of eyes. 

An eye’s gaze ratio 𝜑 is represented as the result of the 
white pixels of the eye’s left part divided by those of the eye’s 
right part, which is shown as follows. 

𝜑 =  
ௐ೗ೞ

ௐೝೞ
                                       (1) 

 
A larger eye gaze ratio 𝜌 indicates a more visible sclera on 

the left part of an eye, and the eye is looking to the right. 
Otherwise, we assume the eye is looking to the left. Normally 
both left and right eyes look in the same direction in eye 
movements. We calculate the average value 𝛷  of the gaze 
ratios of the left and right eyes as the output to evaluate an eye 
gaze of a human subject, which is shown as follows: 
 

𝛷 =  
ఝಽା ఝೃ

ଶ
                                   (2) 

 
where 𝜑௅  and 𝜑ோ  denote the gaze ratios of the left and right 
eye, respectively. In the 100 experiments of the eye gazes in 
Fig. 6 (a-c) performed by 2 human subjects (as shown in Fig. 
8), we found that the gaze ratio 𝛷 < 0.70 when the subjects’ 

eyes are solidly looking to the left and 𝛷  > 1.20 when the 
subjects’ eyes are solidly looking to the right. If the gaze ratio 
𝛷 ∈ [0.70, 1.20], the eyes are looking straight ahead.  

 

Fig. 8. Gaze ratio distribution of different eye gaze orientations. 

To avoid the interference of unconscious eye gaze, such as 
unconscious left-right glance in the eye gaze recognition, an 
eye gaze is believed to be valid when the gaze ratio 𝛷 remains 
< 0.70, ∈ [0.70, 1.20], or > 1.20 for at least 15 frames, i.e., 0.50 
second with a camera frame rate of 30 frames per second (fps). 

Regarding the eye gaze blinking in Fig. 6 (d), a natural 
blinking gaze occurs when the upper and lower eyelashes are 
connected and remain for a short period, typically 0.1-0.4 
second per blinking for a healthy human subject [17]. To detect 
the blinking gaze, we create a horizontal line 𝑙௛௢ and a vertical 
line 𝑙௩௘ for each eye, as shown in Fig. 9, in which the horizontal 
line 𝑙௛௢ connects the left and right landmarks for each eye, i.e., 
landmarks 37 & 40 and 43 & 46. The vertical line 𝑙௩௘ connects 
the midpoint of the two upper landmarks and the midpoint of 
the two lower landmarks of each eye, i.e., the midpoints of 
landmarks 38 & 39 and 41 & 42, and the midpoints of 
landmarks 44 & 45 and 47 & 48.    
 

 

Fig. 9. Eye landmarks and the horizontal and vertical lines. 

As shown in Fig. 10 (a) and (b), the length of the horizontal 
line 𝑙௛௢ keeps almost identical when the eyes are opened and 
closed, while the vertical line 𝑙௩௘ is longer when the eyes are 
open compared with those when they are closed. We take the 
horizontal line 𝑙௛௢ as a reference and calculate the length ratio 
𝑙௛௢/ 𝑙௩௘  of an eye as follows: 

 

𝜓 =  
௟೓೚

௟ೡ೐
                                       (3) 

  
where 𝜓 denotes the length ratio of an eye. The result of the 
𝑙௛௢/ 𝑙௩௘ provides a larger scale than that of 𝑙௩௘/ 𝑙௛௢ because the 
𝑙௩௘ is always shorter than 𝑙௛௢. A larger scale yields the results 
of the length ratio Ψ with a small number of decimal places, 
i.e., the difference between the results of using 𝑙௛௢/ 𝑙௩௘ is larger 
than the difference between the results of using 𝑙௩௘/ 𝑙௛௢, which 
provides convenience and high accuracy in the selection of the 
length ratio 𝛹. We calculate the average value 𝛹 of the length 
ratios of the left and right eyes as the output to evaluate a 
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blinking gaze of a human subject, which is:  
 

𝛹 =  
టಽା టೃ

ଶ
                                   (4) 

 
where 𝜓௅  and 𝜓ோ denote the length ratios of the left and right 
eye, respectively. Based on 100 eye-closure experiments with 
two human subjects, we found the average length ratio 𝛹  ≥ 
5.50 when the subjects closed their eyes. To avoid the 
interference of normal continuous blinking activity, a blinking 
eye gaze is considered valid when the average length ratio 𝛹 ≥ 
5.50 for more than 15 frames, i.e., 0.5 second with a camera 
frame rate of 30 fps, which is longer than the duration time of 
a typical blinking activity, i.e., 0.10-0.40 second. 
 

 
(a) opened eyes                                  (b) closed eyes 

Fig. 10. Length difference between the vertical lines in opened and closed 
eyes. 

3. Instance segmentation using Mask R-CNN 

In this section, an instance segmentation model is trained 
using the Mask R-CNN to recognize and segment tools and 
parts in the workspace. Section 3.1 describes the dataset 
construction and data labeling of the tools and parts. Section 
3.2 details the model architecture and training process. 

3.1. Data annotation and dataset construction 

We collect 8 tools and parts in our dataset, as shown in Fig. 
11. In the image data augmentation, the following techniques 
are applied, including changing brightness change, flipping, 
scaling, rotation, and adding Gaussian noise to the images. The 
dataset includes 370 images, and each image sample includes 
more than one tool and/or part.  

 

 
   (a) block 

 
(b) gasket 

 
(c) screw 

 
(d) prism 

 
(e) screwdriver 

 
(f) Allen-key 

 
(g) wrench 

 
(h) plier 

Fig. 11. Samples of tools and parts. 

The quantity of each class is shown in Fig. 12. In the data 
annotation, we draw polygon masks around the objects of 
interest, then annotate the classes of the objects, as shown in 
Fig. 13, in which the polygon masks can extract the object from 
the image. After that, the classes of objects, image file names, 
polygon’s coordinates, and image dimensions are saved as 
dataset annotations for the model training. Compared with an 
object detection model that coarsely localizes multiple objects 

with bounding boxes, and a semantic segmentation model that 
produces only pixel-level class labels for each class, an instance 
segmentation model produces a more meaningful inference for 
an image, including a segment map of each class as well as each 
instance of a particular class [18,19]. 

 

 

Fig. 12. Distribution of dataset. 

 
(a) sample 

 
(b) sample b 

Fig. 13. Samples of data annotation using polygons. 

3.2. Instance segmentation model architecture 

The architecture of our instance segmentation model using 
the Mask R-CNN is shown in Fig. 14. The size of the input 
image is 640×480, and the model shifts the focus to the ROI of 
all object pixels in the image. In the training progress, the Mask 
R-CNN generates masks of objects in an input image using the 
weights of the pre-trained ResNet-50 network on the COCO 
dataset [20], which allows us to perform robust instance 
segmentation and classification without having to retrain our 
custom weights in generating masks. The input image is fed 
into the deep neural network, which consists of several 
convolutional and fully connected layers. The convolutional 
layers extract low-level features, such as edges and textures of 
the tools and parts in the image, while the fully connected 
layers extract high-level features representing the tools and 
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parts in the image. These features are then fed into the region 
proposal network (RPN), which generates a set of region 
proposals for each object in the image. The region proposals 
are then fed into the ROI pooling layer, which extracts features 
from each region proposal and passes them to the classification 
and mask heads. The classification head outputs the class 
probabilities for each region proposal, while the mask head 
generates the masks for each object in the image. The features 
extracted by the deep neural network are used to differentiate 
the objects in the image and generate the masks [21-23]. 

There are mainly two parallel output branches, in which the 
first branch in  Fig. 14 returns the class labels and bounding 
box coordinates for each object in the input image. In the 
second branch, the model predicts the segmentation masks of 
each object, i.e., the different polygons with different colors 
shown in Fig. 14, and draws the masks on each ROI to provide 
visual segmentation results. Particularly, the second branch 
applies a small fully convolutional network (FCN) to each ROI 
and predicts a segmentation mask in a pixel-to-pixel manner, 
enabling a rapid training process. Finally, the instance 
segmentation model produces a segment map of each class and 
each tool/part of a particular class as inferences. The 
experimental results of the instance segmentation model are 
shown in Section 5.2. 

 

Fig. 14. Architecture of the Mask R-CNN model (Conv: convolutional layer). 

4. System integration and visualization  

A software interface is developed to enable a visual end-to-
end solution for our HCI system. A human user can perform 
instance segmentation and choose multiple tools and parts 
using only eye gazes [24, 25]. The system operates with the 
following mechanism: 

1) When the system starts, the system’s user manual is 
displayed to provide instructional information to the user (Fig. 
15 (a)). After that, the system turns on the webcam to detect the 
user’s blinking eye gaze. The user can blink his/her eyes to 
continue. 

2) Next, the instance segmentation interface is displayed as 
shown in Fig. 15 (b), in which the left window of the interface 
displays a random image with multiple tools and parts, and the 
right window of the interface displays the instance 
segmentation results of the input image. Then the webcam is 
turned on to detect the user’s blinking eye gaze, and the 
software interface moves to the next step if the user blinks 
his/her eyes. 

3) After that, the interface shown in Fig. 15 (c) is displayed, 
in which the user can choose tools or parts by looking to the 
left or right, respectively. Then, the segmented tools or parts 
are listed on the top windows shown in Fig. 15 (d), along with 
the recognized class labels, which are cyclically highlighted 

individually. The user can select a highlighted tool or part by 
blinking. Each highlighted label remains for 1.00 second. After 
choosing the tool or part, the system rolls back to the interface 
shown in Fig. 15 (c), allowing the user to continue choosing 
other tools and parts. The label of the selected tool or part is 
saved on the board on the right window of the interface shown 
in Fig. 15 (c) and (d).  
 

 
(a) Manual interface 

 
(b) Instance segmentation interface 

 
(c) Tools and parts choosing interface 

 
(d) Highlighted object choosing interface 

Fig. 15. Software interface for the HCI using eye gazes. 
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5. Experiments 

In this section, we evaluate the proposed eye gaze tracking 
and recognition model in Section 2, the instance segmentation 
model in Section 3, and the software interface in Section 4.  

5.1. Experimental results of eye gaze recognition 

To evaluate the accuracy of the proposed eye gaze 
recognition model, we conduct experiments involving 2 
subjects. The distance between the eyes and the webcam is 

around 40 cm, and the webcam frame rate is 30 fps. The 
performance of the eye gaze recognition model is shown in 
Table 1, in which the ground truth of the eye gazes, and the 
recognition results are given, such as the 92/95 in the eye gaze 
blinking indicates that 92 blinking eye gazes are recognized out 
of the 95 blinking eye gazes in the ground truth. The average 
accuracy of the experimental results for the two subjects is 
98.90%, and the computation time of an eye gaze is less than 
0.001 second on average, which is faster than real-time. The 
quantity results of the eye gazes looking to the left and looking 
to the right of the two subjects are shown in the Fig. 16.

 

 

Fig. 16. Experimental results of looking to the left and looking to the right.

Table 1 Performance of the eye gaze recognition model. 

Subject 

Eye gazes 
Average 

accuracy 
looking 
straight 
ahead 

looking 
to the left 

looking 
to the 
right 

blinking 

1 97/97 85/85 86/87 92/95 98.92% 

2 103/103 77/78 92/94 90/91 98.87% 

 

We conduct relevant experiments to evaluate the effect of 
distance variation between the eyes and the webcam on eye 
gaze tracking and recognition. The experimental results are 

shown in Fig. 17, in which the distance between the human 
subject and the webcam increases from about 10 cm to about 
160 cm, and the human subject’s eyes are successfully detected 
and tracked with the eye landmarks shown in Fig. 9. Note that 
the gaze landmarks keep the same size when the distance 
between the human and the camera continuously increases, 
resulting in the overlapping of the eye and the landmarks in Fig. 
17 (d) and (e), where the sizes of the eyes are smaller than the 
eyes in Fig. 17 (a-c) because of the long distance between the 
eyes and the camera. The processing time of eye tracking is less 
than 0.001 second, which is real-time. The experimental results 
indicate the robustness of the real-time eye tracking. 

 

 
                             (a)                                         (b)                                          (c)                                 (d)                             (e) 

Fig. 17. Eye tracking at different distances between the eyes and the webcam

The experimental results shown in Table 2 indicate the 
performance of the eye gaze recognition model when dealing 

with different distances between the human eyes and the 
webcam. Each distance case includes 100 experiments for each 
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eye gaze in the first column in Table 2.  The accuracy values of 
all eye gazes decrease as the distance between the subject’s 
eyes and the webcam increases, but at a distance of about 160 
cm between the subject’s eyes and the webcam, the accuracy 
of the eye gaze looking straight ahead remains 99%, the 
accuracy of the eye gazes looking to the left and looking to the 
right remains 97%. The accuracy of the eye gaze blinking 
remains 94%. The experimental results illustrate the robustness 
of the proposed eye gaze recognition model in handling 
different distances between the human subject’s eyes and the 
webcam. 

Table 2 Performance (%) of the eye gaze recognition model in dealing with 
different distances between eyes and webcam. 

Eye gaze 
10.00- 
40.00cm 

40.00-
70.00cm 

70.00-
100.00cm 

100.00-
130.00cm 

130.00-
160.00cm 

looking 
straight 
ahead 

100.00 100.00 100.00 99.00 99.00 

looking 
to the left 

100.00 100.00 97.00 97.00 97.00 

looking 
to the 
right 

100.00 99.00 98.00 97.00 97.00 

blinking 100.00 99.00 98.00 96.00 94.00 

 
It has been implied that the distance between a human 

subject’s eyes and a webcam in eye gaze recognition is 
approximately 40-60 cm [26]. According to the Occupational 
Safety and Health Administration, the recommended safe 
viewing distance between the eyes and a computer monitor is 
around 40-70 cm [27]. The webcam is fitted with a computer 
monitor in our eye gaze recognition. Therefore, the user's eyes 
are at the same distance from the webcam and the monitor. 
When the distance between eyes and the webcam is 40-60 cm, 
i.e., the second column in Table 2, our recognition accuracy 
achieves 100% for the eye gazes looking straight ahead and 
looking to the left, and 99% for the eye gaze looking to the right 
and blinking, which enables accurate recognition within the 
safe distance between the eyes to the monitor/ webcam.  

Overall, the proposed eye gaze recognition model can 
maintain robust eye tracking within a distance of 160 cm 
between a subject’s eyes and a webcam and achieve an average 
eye gaze recognition accuracy of 99.5% within the 
recommended safe distance (40-60 cm) between a subject’s 
eyes and a webcam. The proposed method can recognize an eye 
gaze within less than 0.001 second under 30 frame-per-second, 
which is much faster than real-time (1/30 second, i.e., around 
0.333 second). The proposed gaze recognition model only 
needs a simple RGB camera to collect gaze data, which enables 
our model to be used in other application platforms by only 
adding one RGB camera and shows the generalization ability 
of our method. 

5.2. Experimental results of instance segmentation 

The dataset includes 370 images of 8 different tools and 
parts, and each image includes more than one object. The ratio 
of the training, the validation, and the testing dataset is 6:2:2. 
In the training process, the epoch is 100, and the learning rate 

is 0.001. Several widely used metrics are used to evaluate the 
classification performance: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்௉ା்ே

்௉ାிேାி௉ା்
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where True Positive (TP) refers to a sample x belonging to a 
class C that is correctly classified as C. True Negative (TN) 
indicates that a sample x from a ‘not C’ class is correctly 
classified as a member of the ‘not C’ class. The False Positive 
(FP) is when a sample x from a ‘not C’ class is incorrectly 
classified as class C. The False Negative (FN) denotes that a 
sample x from class C is misclassified as belonging to a ‘not C’ 
class. The F1score is the harmonic mean of precision and recall 
and provides a single value that summarizes the accuracy of the 
model in recognizing objects. 

The confusion matrix of the test dataset is shown in Fig. 18, 
in which the rows represent the ground truth labels, and the 
columns represent the recognition results. The values along the 
confusion matrix diagonal show the recognition accuracy of 
each class. All accuracy values are larger than 98%, and the 
accuracy of the label plier, block, and prism is 100%.  
 

Fig. 18. Confusion matrix of the instance segmentation 
model (%). 

 
Table 3 shows the value of the metrics shown in Eqs. (5-8), 

i.e., Accuracy, Precision, Recall, and F1score. The values of 
these four metrics are all larger than 96% for the 8 labels. The 
average values of the Accuracy, Precision, Recall, and F1score 
are larger than 99% for all of them. The metrics of the plier and 
the prism are all 100%. The recognition results show the 
performance of the trained instance segmentation model in 
segmentation of the 8 tools and parts, and indicate high 
accuracy of the instance segmentation model. 
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Table 3 Performance (%) of instance segmentation model. 

Labels Accuracy Precision Recall 𝐹ଵscore 

Screwdriver 98.46 96.97 98.46 97.71 

Allen-key 98.39 96.83 98.39 97.60 

Wrench 98.41 100.00 98.41 99.20 

Plier 100.00 100.00 100.00 100.00 

Block 100.00 98.36 100.00 99.17 

Gasket 98.36 100.00 98.36 99.17 

Screw 98.46 100.00 98.46 99.22 

Prism 100.00 100.00 100.00 100.00 

Two samples of the instance segmentation are shown in Fig. 
19 (a, b), in which the bounding boxes, masks, class labels, and 
recognition confidence scores for all objects are shown 
respectively. The bounding boxes and the masks of an object 
in the image share the same color, and the bounding boxes are 
given in dashed line. The confidence score in the interval [0, 1] 
represents the confidence that an object is recognized as the 
given class [28]. All recognition confidence scores are higher 
than 99.30%, and all predicted masks and bounding boxes 
correctly match the target objects.  

 

 
(a) 

 
(b) 

Fig. 19. Samples of instance segmentation results. 

When processing an input image with multiple identical 
objects, the instance segmentation model generates 

segmentation maps of each class and each instance of a 
particular class, as shown in Fig. 20. Although the polygon 
masks and the object shapes in Fig. 20 are not 100% identical, 
the two identical blocks and two identical gaskets are 
individually recognized with correct bounding boxes, class 
labels, and recognition confidence scores of  92%.  

 

Fig. 20. A sample of instance segmentation with multiple identical objects. 

5.3. Experimental results of system visualization 

When the system starts, the manual interface is displayed, 
as shown in Fig. 21, which provides the system’s user manuals 
for the eye-gaze-based software, including guidance and 
precautions during the usage of the software, such as choosing 
tools by looking to the left, choosing parts by looking to the 
right, keeping the head still and being relaxed, and only move 
eyes to look to the left or right sides. etc. The manuals are given 
line-by-line. After all the manuals are given, the webcam is 
turned on to capture the blinking eye gaze. 

 

Fig. 21. Visual manual information. 

The visual instance segmentation interface is shown in Fig. 
22, in which the details of the bounding boxes, masks, class 
labels, and confidence scores are given. The tools and parts are 
correctly segmented with bounding boxes and recognized with 
confidence scores ≥ 99%. The instance segmentation interface 
provides the user with visual information about the tools and 
parts on the platform, and it is capable of recognizing the 
blinking eye gaze of the user, as shown in the right corner of 
Fig. 22. 
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Fig. 22. Visual instance segmentation. 

The interface shown in Fig. 23 is displayed when the 
blinking eye gaze is detected in the visual instance 
segmentation shown in Fig. 22. The RGB webcam frames and 
the user’s facial and eye landmarks are displayed in Fig. 23 
simultaneously. Based on the options on the top of the 
interface, the user in Fig. 23 is looking to the left with a gaze 
ratio of 0.25, which indicates the user’s intention to choose the 
segmented parts in Fig. 22. 

 

 

Fig. 23. Visual eye gaze recognition - looking to the left. 

After that, the interface shown in Fig. 24 cyclically 
highlights each part for 1 second and saves the chosen part 
gasket on the board when the software interface recognizes the 
user's blinking eye gaze. A dynamic green bar is displayed at 
the bottom of the webcam frame window to indicate the 
blinking recognition. This bar dynamically grows longer from 
left to right as the average length ratio 𝛹  of the blinking 
increases. A full-length green bar and red highlighted eye 
landmarks in Fig. 24 indicate a valid blinking eye gaze. 
 

 

Fig. 24. Visual eye gaze recognition - choosing a part.  

The eye gaze recognition at a distance of about 160 cm 
between the user and the webcam is shown in Fig. 25 (a, b), in 
which the eye gaze looking to the left is recognized with a gaze 
ratio of 0.46 (Fig. 25 (a)). The eye gaze blinking is recognized 
with the full-length green bar at the bottom of the left RGB 
webcam frame and the red highlighted eye landmarks system 
(Fig. 25 (b)). The results in Fig. 25 (a, b) show the robustness 
of the system in handling long distances between the user and 
the webcam. 

The experimental results show that the visual end-to-end 
software interface can automatically perform tasks, including 
the eye gaze tracking and recognition, instance segmentation of 
tools and parts, and dynamic interface switching with the 
integrated eye gaze recognition and instance segmentation 
models. A video demonstration is available: link. 

 

 
looking to the left

 
blinking 

Fig. 25. Visual eye gaze recognition in around 160 cm distance between the 
eyes and the webcam. 
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6. Conclusion  

In this paper, we propose an eye-gaze-based human-
computer interaction (HCI) system enabling real-time 
interaction between a human subject and a visual software 
interface using a webcam. In the proposed HCI system, an eye 
gaze recognition model is designed using the distribution of the 
sclera region of the eyes and the distance between the upper 
and lower eyelashes of the eyes. An instance segmentation 
model is proposed to recognize and segment tools and parts 
using the Mask Region-Based Convolutional Neural Network 
(R-CNN) approach. A visual software interface is designed by 
integrating the eye gaze recognition and instance segmentation 
models.  

The proposed HCI system enables the real-time capture, 
tracking, and recognition of four eye gazes via a webcam. It 
can execute the recognition of tools and parts as well as provide 
a customized selection of objects based on the recognized eye 
gazes. According to the experimental results of our models, the 
proposed eye gaze recognition model achieves an average 
accuracy of 99% within a recommended safe distance (40-60 
cm) between the eyes and the webcam, and the instance 
segmentation model achieves an average accuracy of 99%. The 
real-time system experimental results demonstrate the 
feasibility and robustness of the proposed HCI system.  

In the future, we will consider the following studies: 1) 
More eye gaze data under different environmental factors, such 
as lightning conditions, reflections and shadows, will be 
considered to increase the robustness of the gaze recognition 
model. 2) Various backgrounds will be considered in the 
instance segmentation of tools and parts to yields the 
generalizability of the instance segmentation model. 3) A 
human-robot collaboration system will be constructed by 
applying the proposed HCI system to the collaboration between 
a human subject and a robot. 
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