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bstract 

omputer vision plays an essential role in Industry 4.0 by enabling machinery to perceive, analyze, and control production processes. Object 
etection, a computer vision technique that accurately classifies and localizes objects within images, has gained significant interest. This 
echnique can be applied in various domains, including manufacturing, to assist in the detection of different tools. In this paper, You-Only-
ook-Once (YOLO)v5 real-time object detection technique has been developed and optimized, to detect different tool types and their locations 

n a manufacturing setting. To train the neural network, a dataset of 3,286 tool images from the internet has been collected and annotated. To 
nhance the model's ability in generalization, three augmented variants of each image have been created to improve rotation invariance. The 
odel's training scheme has been further optimized with stochastic gradient descent after configuring different hyperparameters such as 

earning rate and momentum. The fine-tuned model achieved a mean average accuracy of 98.3%, demonstrating the high precision of the model 
n detecting different tool types and their locations in real-time.  

 2023 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license 
https://creativecommons.org/licenses/by-nc-nd/4.0) 
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. Introduction 

Industry 4.0 fosters standard manufacturing companies 
oward smart manufacturing through the Industrial Internet of 
hings (IIOT), big data analytics, Cyber-Physical Systems 

CPS), Augmented Reality (AR), and robotics [1]. Notably, 
omputer vision lies at the core of many of these 

echnologies, enabling machines and gadgets to perceive and 
omprehend their environments. As a technique of computer 
ision, object detection is a problem that deals with not only 
he class of objects (object classification) but also the location 
f each object within an image or video streams (object 
ocalization). This technique could be used for detecting and 
ocating different types of tools in a manufacturing setting, 
elping robots with detecting required tools for a process, 

inventory management and quality control of assembly lines 
by monitoring the correctness of tools being used at each step. 

The majority of current mainstream object detection 
algorithms are built on deep learning models and could be 
classified into two groups: single-stage detectors and two-
stage detectors. As the name indicates, single-stage detectors 
try to classify and localize objects at one time (one-shot) using 
dense sampling. However, in two-stage detectors, one module 
attempts to identify an arbitrary number of region proposals 
using selective search Region Proposal Networks (RPN), and 
a separate module is responsible for the classification and 
localization adjustment based on the region proposals [2-3] 
(Fig. 1). Region-Based Convolutional Neural Network (R-
CNN) [4], Fast R-CNN [5], and Faster R-CNN [6] are the 
most well-known ones among two-stage detectors.  
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Fig. 1. Architectures of one-stage and two-stage detectors [7] 

These detectors provide higher localization and object 
recognition accuracy at the cost of adding complexity and 
time required for generating region proposals. YOLO is a one-
stage object detector that enables the classification and 
localization of objects in a single step. This regression-based 
object detector, which was first proposed in 2016, only 
contained convolutional layers and achieved the detection 
speed of 45 frames per second, making it an ideal candidate 
for real-time purposes [8]. Anchor boxes, batch normalization, 
k-means clustering, and high-resolution detector were 
introduced in YOLOv2 to improve the accuracy of previous 
model [9]. YOLOv3 was the first model among YOLO series 
that used residual networks in its architecture [10]. In 
YOLOv4, Cross Stage Partial Networks (CSP), Spatial 
Pyramid Pooling (SPP) and Path Aggregation Network 
(PANet) were introduced [11]. On the basis of YOLOv3 and 
YOLOv4, YOLOv5 incorporated a special Focus and CSP 
module to further enhance and integrate image features and 
achieve a high level of speed and accuracy [12]. 

In this paper, the YOLOv5 object detection algorithm has 
been optimized by adjusting hyperparameters and taking 
advantage of stochastic gradient descent optimizer (SGD) to 
be used for detecting various lightweight industrial tools. 
Real-time tool detection could be further applied to Human-
Robot Collaboration (HRC), CPS, and AR within the Industry 
4.0 framework. The application, implementation and fine-
tuning of the algorithm, data acquisition and annotation have 
been the primary focuses of this work. The remainder of this 
paper is organized as follows: Section 2 explains the 
optimized YOLOv5 algorithm, and the dataset is presented in 
the Section 3. The results are discussed in Section 4, followed 
by a conclusion in Section 5. 

2. The Proposed Method 

In this study, we fine-tuned and optimized YOLOv5 
parameters to detect different tools in real-time. As a unified 
object detection model, YOLOv5 generates the bounding box 
coordinates and matching class probability for objects within 
an image. It works by dividing the input image into a grid; if 
the center of an object falls within a grid cell, that grid cell is 
in charge of detecting the object by predicting multiple 
bounding boxes, each of which consisting of the center 
coordinates (x, y) and dimensions (width and height) of the 
bounding box, as well as the confidence score (Fig. 2). 

The architecture of YOLOv5 is primarily composed of 
three modules: backbone, neck, and head. The backbone 
module, which consists of CNN layers, extracts the main 
features from the input image. This is done using focus 
structure, CSP, and Spatial Pyramid Pooling (SPP). The focus 
block consists of four parallel slice layers to interlace an input 
image of size 3*640*640 into four 3*320*320 images. Using 
the concatenate module, images are spliced from depth to 
form 320*320*12 to be further processed in CBL module 
consisting of convolutional layers, batch normalization and 
leaky ReLu activation function (Fig.3). By reconstructing a 
low-resolution image from a given high-resolution input, the 
focus module allows the spatial information of the input image 
to be sent to the channel dimension without any of the details 
lost in the process. The main objective of this module is to 
speed up model execution by reducing parameters, the number 
of calculations, and the memory space required by the GPU 
[13].  

CSP module is a neural network architecture that employs 
a cross-stage feature fusion technique. In this technique, input 
features are split into two groups: one group goes through a 
CBL module followed by a convolutional layer, while the 
other group is only processed by a single convolutional layer. 
These two groups are then combined for subsequent 
processing. This approach enables CSP to leverage both high-
level and low-level features, resulting in richer combination of 
features and improved performance in terms of detection 
speed and accuracy [14-15].  

 
Fig. 2. Basic concept of YOLO [8] 
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Deep residual networks (ResNet) used in CSP1-X module, 
includes two CBL units and a skip connection which is a 
shortcut that allows the gradient to flow directly to earlier 
layers in the network, helping to prevent the vanishing 
gradient problem and enabling the training of deeper neural 
networks with improved accuracy. The SPP block mainly 
consists of max pool layers for multi-scale feature fusion. 

The primary function of the neck is to aggregate features 
and build feature pyramids using a Path Aggregation Network 
(PANet), which improves the ability of the model to detect the 
same objects with different scales and sizes. The head module 
performs the final detection part and generates bounding 
boxes that indicate the category, coordinates, and confidence 
rates based on the multi-scale feature maps from the neck 
module [16-19] (Fig. 3). 

YOLOv5 is available in four different sizes (small: 
YOLOv5s, medium: YOLOv5m, large: YOLOv5l, and x-
large: YOLOv5x), all of which share the same basic structure 
other than the difference in depth and width, which determine 
the depth and the number of convolution cores in the 
backbone module of the model. Intuitively, a larger network 
with more tuning options should perform better, but, on the 
flip side, it increases both training and inference times.  

In order to achieve high accuracy and efficiency with deep 
learning models like YOLOv5, it is crucial to tune the 
hyperparameters such as learning rate, momentum and weight 
decay correctly. Setting the learning rate that determines the 
step size of the optimization algorithm to a high value can 
cause the loss to oscillate or diverge, while a low learning rate 
can cause the training to be slow or get stuck in local minima. 
The linear learning rate scheduler with the formula provided 

in equation (1) is used to adjust the learning rate over time. 
Thus, a high learning rate in the initial steps of training 
increases the convergence speed and by gradually reducing the 
learning rate to a lower value a better accuracy and 
performance will be achieved.  

𝑙௥ = (1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡௘௣௢௖௛

𝑀𝑎𝑥௘௣௢௖௛

 (1 + 𝑙௙) (1) 

Momentum parameter has also been employed to escape 
shallow local minima and increase convergence speed. This 
process works by adding a fraction of the previous steps to the 
current update, which helps to reduce the amount of 
oscillation and smooth out the convergence. In essence, it 
allows the optimization algorithm to remember the direction it 
was moving in the previous iterations and continue in that 
direction with a certain amount of force. This parameter 
should be chosen carefully as a high momentum cause the 
algorithm to overshoot the minimum and oscillate around it. 
Additionally, weight decay as a regularization technique that 
helps preventing overfitting and enhancing generalization is 
used. This is done by adding a penalty term to the loss 
function which is proportional to L2 norm of the model's 
weights multiplied by a hyperparameter. 

Finally, SGD optimizer has been used to update the model 
parameters based on a subset of the training data, rather than 
the full dataset. This way, instead of computing the gradient of 
the entire training dataset at once, small batch is used to 
update the model parameters. This optimizer allows for faster 
and more efficient training especially on large datasets. The 
procedure of this work is shown in Fig. 4.   

 
Fig. 3. Architecture of YOLOv5 [20] 
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Fig. 4. Procedure of the proposed method 

4. Data Collection and Labeling 

Object detection requires a large number of annotated 
images for training and evaluation. For the purpose of this 
research, 3,286 RGB images consisting of 17 classes of 
industrial tools have been collected from the internet. The 
collected dataset consists of adjustable wrench, double open-
end wrench, single open-end wrench, double box-end wrench, 
combination wrench, pipe wrench, pliers wrench, Phillips 
screwdriver, flat-head screwdriver, pliers, tape measure, level, 
hammer, mallet, screw, washer, and nuts (Fig. 5).  

CNN algorithm is known to be translation invariant as it is 
endowed with pooling layers. However, it does not have 
inherent invariance against changes in size or orientation. 
Therefore, this issue needs to be resolved throughout the 
training phase. For this reason, numerous variants of tools 
have been included in the data collection process. This allows 
the model to be exposed to and learn from a wider range of 
examples. We considered objects with different settings and 
backgrounds, different positions, orientations, and scales. 
Moreover, using augmentation techniques (random horizontal 
and vertical flips and 90-degree clockwise and 
counterclockwise rotations) each image obtained a maximum 
of three augmented variants to become rotation invariant. 

Data annotation, also known as labeling, is an essential 
part of object detection, and it directly impacts the model’s 
ability to learn and improve performance. The Roboflow 
platform [21] was utilized to label each image in the dataset 
by drawing a bounding box and assigning a corresponding 
label. Labels have been generated individually for each image 
in the text format, consisting of five numbers for each object 
in the image, with the first number being the class of object, 
followed by the x and y position of the center of the bounding 
box, width, and height of the bounding box. On average, 1.9 
annotations have been made for each image, and the number 
of objects per image varied between 0-30, with the single-
object image being the most frequent. The total number of 
objects per class, before applying augmentation, is shown in 
Fig. 6. 

 

 

  

adjustable wrench double open-end 
wrench 

single open-end 
wrench 

 

  

 

combination wrench double box-end 
wrench pipe wrench 

 

 

  

pliers wrench Phillips screwdriver flat-head screwdriver 
 

 

  

hammer mallet tape measure 
 

 

  

level pliers screw 
 

 

  

washer nuts  

Fig. 5. Sample images in the dataset 

 
Fig. 6. Class-specific annotations 

5. Results and Discussion 

The experiment has been performed on a computer 
equipped with an Intel® Xeon® processor and an NVIDIA 
RTX A5000 graphics processor (24 GB memory). Network 
learning rate fine-tuned and adjusted to 0.001 and the SGD 
method has been adopted to optimize the training process. 
The weight decay and momentum parameter were optimized 
and set to 0.0006 and 0.9, respectively. The dataset has been 
randomly divided into training, test, and validation sets with 
the ratio of 7:1.5:1.5, and the maximum number of iterations 
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has been chosen to be 200. The performance of the model is 
mainly evaluated, using the precision (P) and recall (R) 
metrics for each class provided in equation (2-3): 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

where TP (true positive) is the number of tools that are 
successfully detected, FP (false positive) denotes the number 
of tools that are incorrectly detected as other categories of 
tools, and FN (false negative) specifies tools that are not 
detected. For instance, considering precision and recall for the 
class of tape measure, TP is the actual tape measures that the 
model correctly detected, and FP denotes other objects, such 
as level, wrench, etc., that were mistakenly detected as tape 
measures and FN denotes tape measures that the model was 
not able to detect as tape measures. In brief, precision 
indicates how well a model can make predictions within a 
given classification, and recall refers to the number of times a 
model successfully detected a specific class [22]. 

Precision and recall cannot individually evaluate the entire 
performance of the model. Hence, average precision (AP), the 
area under the P-R curve, is employed to summarize the PR 
Curve to one scalar value. Average precision calculated by 
equation (4) has a high value when both recall and precision 
values are high, and when either precision or recall drops in 
value, AP becomes low. 

𝐴𝑃 = න 𝑃(𝑅)𝑑𝑅
ଵ

଴

 (4) 

Average precision is calculated on a class-by-class basis 
and considers each class individually. In order to evaluate the 
performance of the model for all classes using one unified 
metric, mean average precision (mAP) is utilized and can be 
calculated using the equation (5): 

𝑚𝐴𝑃 =
1

|𝑛௖|
෍ 𝐴𝑃(𝑖)

௡೎

௜ୀଵ

 (5) 

where 𝑛௖ is the number of classes. Fig. 7 depicts mAP for 
each epoch with the final mean average precision of 98.308%.  

 
Fig. 7. mAP results for each epoch 

Precision and recall metrics are shown in Fig. 8 and Fig. 9, 
respectively. The maximum recall value is 96.44%, and the 
maximum precision value is 98.07%. As both of these values 
are high enough, it can be inferred that most tools are 
accurately detected by the model.  The precision-recall curve 
shown in Fig. 10 indicates that the model maintains high 
precision while achieving high recall for all classes.  

 
Fig. 8. Precision results for each epoch 

 
Fig. 9. Recall results for each epoch 

 
Fig. 10. Precision-recall curve for each class 
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The confusion matrix is shown in Fig. 11, in which each 
column indicates the actual category, and each row indicates 
the predicted class for each object. By analyzing the 
confusion matrix, it is observed that the model performed well 
in detecting adjustable wrench, pipe wrench, and washer.  

However, it performed the worst in detecting pliers wrench 
with the accuracy of 90%. About 3% of actual pliers wrench 
and 2% of combination wrench were misclassified as pliers 
and double open-end wrench, respectively. 

The model localizes each object with a bounding box and 
classifies it as a tool type with a confidence rate. Fig. 12 
illustrates an example of the model's prediction on one sample 
image, with a confidence rate above 0.9, indicating a high 
level of confidence in detecting tools. While the model 
demonstrated proficiency in identifying different tool 
categories, it is essential to examine the factors that could 
impact the accuracy of its detecting results, especially in real-
world scenarios.  

One such factor is the quality and representativeness of the 
collected dataset. To ensure the model's robustness and 
accuracy, a high-quality dataset with diverse tool types, 
backgrounds, scales, and orientations should be used. 
Moreover, the model's hyperparameters, such as the learning 
rate, momentum and weight decay can also impact the 
accuracy. Careful tuning of these hyperparameters can 
optimize the model's performance and improve its detecting 
results.  

Furthermore, the performance of the trained model in real-
world scenarios may be impacted by factors such as tool 
variations (in terms of size, shape, color, and other visual 
characteristics) and environmental conditions (lighting and 
background), which are not fully represented in the training 
dataset. Hence, despite attempts to create a comprehensive 
dataset for this study, the model's accuracy could still be 
influenced by the unpredictability of real-world conditions in 
which the tools are utilized. 
 

 

 
Fig. 11. Confusion matrix 
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6. Conclusion and Future Work 

In this study, we aimed to enhance the performance of the 
YOLOv5 real-time object detector model to be used as a real-
time tool detector for smart manufactories. This has been 
done by configuring the hyperparameters such as learning rate 
and momentum and utilizing SGD optimizer. After collecting 
3,286 images of 17 classes of lightweight industrial tools with 
different scales, orientations and backgrounds, each image has 
been labeled according to the YOLOv5 standard and received 
up to three augmented variances (horizontal/vertical flips and 
90-degrees rotation) to enhance rotation invariance. Finally, 
the YOLOv5x model has been trained with optimized 
hyperparameters to detect and localize different tools. The 
model's effectiveness has been demonstrated by achieving a 
mean average precision of 98.3%. 

In the future, we will try to improve model performance 
and generalization by employing regularization techniques. 
Additionally, by integrating our model with a drone we aim to 
experiment the performance in more real-world scenarios. 
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