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ABSTRACT

Nowadays, mechanical devices such as robots are 

widely adopted for limb rehabilitation. Due to the 

variety of human body parameters, the rehabilitation 

motion for different patient usually has its individual 

pattern. Thus it is obviously not an optimal solution to 

use a single motion generator to suit all patients. Yet it 

would also be unpractical if we design a different motion 

or even a different mechanism for each user individually. 

Therefore, in this paper we seek to adopt clustering-

based machine learning technique to find a limited 

number of motion patterns for upper-limb rehabilitation, 

so that they could represent the large amount of those 

from people who have various body parameters. Firstly, 

the trajectory of a specified rehabilitation motion are 

recorded from various subjects, and then 4 types of 

machine learning algorithms (spectral clustering, 

hierarchical clustering, self-organizing mapping neural 

network and Gaussian mixture model) are implemented 

and compared. It is shown that spectral clustering (SC) 

yields the best performance and is hereby adopted to 

                                                           
Contact author: ping.zhao@hfut.edu.cn. 

generate three clusters of motion patterns. After 

regression of each cluster, three types of motion for 

upper limb-rehabilitation are constructed, which could 

reflect the trajectories’ similarity and difference of 

people who have various body parameters. These work 

will provide help for the design of rehabilitation 

mechanisms. 

Keywords: Rehabilitation mechanism; Machine 

learning; Clustering; Motion synthesis 

 

1. INTRODUCTION 

In recent years, mechanical assisting devices such 

as robots have been recognized as one of the most 

significant developments in emerging industries [1, 2]. 

The application of assisting machines in the field of 

rehabilitation not only provides effective training for the 

patients, but also reduces the burden on clinical staff and 

the cost of health care. As one of the most important 

rehabilitation devices, the upper limb rehabilitation 
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mechanism is an automatic device for assisting patients 

with upper limb dysfunction to complete corresponding 

rehabilitation training and provide feedback information 

for rehabilitation physicians and patients. At present, the 

structural design of upper limb rehabilitation robots 

mainly includes end traction mechanism and 

exoskeleton mechanism [3]. The former basically takes 

linkages or serial robot as the main mechanism, and 

realizes the repeated rehabilitation training by 

supporting and pulling the end of the patient's upper 

limb. For example, Raymond Holt designed a dual-arm 

robot called iPAM [4] and a 2-DOF upper limb 

rehabilitation robot named UECM was developed by 

Zhang [5]. The exoskeletons, on the other hand, usually 

have a kinematic mechanism consistent with the human 

body, a wearable mechanism that is designed to contact 

the patient's limb and the exoskeleton structure, and 

transmit forces to the limb for realizing the auxiliary 

rehabilitation training. Examples of this type of 

rehabilitation mechanisms include the 7-DOF 

exoskeleton powered arm CADEN-7, which was 

designed by Perry et al. [6], and a 3-DOF EMUL 

rehabilitation robot that was developed by Haraguchi 

from Osaka University [7]. Considering the cost of these 

multi-DOF rehab devices is usually quite expensive, 

designers also proposed a series of one-DOF rehab 

mechanisms for specified tasks. Naghavi [8] proposed 

an active one-DoF mechanism for knee rehabilitation. 

Franci [9] designed a parallel mechanism for modelling 

passive motion at the human tibiotalar joint. Our group 

[10] also proposed a cam-linkage mechanism for lower-

limb rehabilitation with Kinematic-Mapping based 

motion synthesis approach. 

Since human body parameters vary among each 

individual, apparently the suitable rehabilitation motion 

for different patients should also have different patterns. 

If one-DOF rehabilitation mechanisms are adopted for 

its simpler structure and lower cost, then a group of 

different mechanisms need to be prepared to adjust 

different users since one-DOF mechanisms can only 

generate one specified motion. On the other hand, to 

address such issues, most of the current multi-DOF limb 

rehabilitation mechanisms are controlled and programed 

to produce training trajectories in different scales to 

reflect the limb length. Yet, body parameters such as 

height and weight also affects the trajectories but they 

are usually not considered. It would also be unpractical 

to customize a different motion or mechanism for each 

user individually. Therefore, in this paper, we use 

clustering technique to find a limited number of motion 

patterns for upper-limb rehabilitation, so that they could 

represent the large amount of those from people who 

have various body parameters. 

Cluster analysis technique is an important tool in the 

fields of machine learning, data mining and pattern 

recognition, etc. It classifies similar objects into the 

same class and separates objects with large distinction 

into different classes according to the relevant 

characteristics of data objects, and potential intrinsic 

links are found to support decision making [11, 12]. A 

series of clustering algorithms have been proposed in 

recent years, e.g. spectral clustering (SC) [13], 

hierarchical clustering (HC) [14], self-organizing 

mapping neural network (SOM) [15] and Gaussian 

mixture model (GMM) [16]. These clustering technique 

has broad application field and prospects due to its 

versatility, applicability and feasibility, such as MCI 

patient detection, image processing, human motion 

analysis and dynamic data processing [17-19]. 

Fig.1 Design procedure of upper limb rehabilitation robot  

 

This paper proposes a method to find a limited 

number of suitable motion generator for upper limb 

rehabilitation of patients with various body parameters. 

As shown in Fig.1, firstly, a number of healthy subjects 
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are invited into the data collecting process. The height 

of the subjects vary from 158cm~187cm, the weight 

range from 42kg~97kg and the arm length from 

45cm~60cm. We take the movement of the upper-limb 

during a boating motion as the rehabilitation training 

motion. The subjects’ upper-limb motion trajectory and 

their respective physical parameters are acquired by 

Cortex Version 5.0, a high-precision labeled motion 

capture system. Then, 4 types of machine learning 

algorithms (spectral clustering, hierarchical clustering, 

self-organizing neural network and Gaussian mixture 

model) are implemented and compared in Section 3, and 

three clusters are established. After regression of each 

cluster, three types of motion for upper limb-

rehabilitation are constructed. We will complete two 

mechanism design examples using one cluster of the 

rehabilitation motion, including a spatial multi-DOF 

mechanism with an accurate realization of the task, and 

a planar one-DOF mechanism that could approximately 

lead through the task rehabilitation motion. 

2. ACQUISITION OF UPPER-LIMB 

REHABILITATION TRAJECTORY DATA 

Our data acquisition environment is as follows: The 

computer’s operating system is a 64-bit Windows 10 

operating system, the processor is Intel (R) Core (TM) 

i5-7600 CPU @ 3.50GHz, RAM 8.00GB, and a high-

precision labeled motion capture system named Cortex 

(the right one of Fig.2) is used to record data and 

trajectory extraction. A total number of 47 healthy 

subjects have participated in the data collecting process, 

who wear the experiment equipment for the motion 

capture (the left one of Fig.2). 

Fig.2 Subject wearing the motion capture device (left) and 

the motion recording equipment Cortex (right) 

 

8 cameras as showed in Fig.2 are used to record the 

real-time trajectory of 25 small balls fixed to each joint 

of the subject and to acquire the motion trajectory of 

each body part of the subject. And the spatial location 

information of the specified 3 points (S, E and W) on the 

left arm and 3 points on the foot and waist in a motion 

cycle are fixed, where the three points S, E and W 

represent respectively three small balls fixed to the 

shoulder joint, the elbow joint and the wrist joint. Fig.3 

shows the schematic diagram of the trajectory 

acquisition environment and the location division of the 

8 cameras.  

Fig.3 The environment of trajectory acquisition 

 

Then, after learning from the demonstration video 

of rehabilitation training motion, the subjects 

accomplished the specified boating movement (Fig.4) 

for upper limb rehabilitation training in the environment 

of trajectory acquisition. Debugging and coordinate 

calibration of the experiment equipment were also 

completed before operating the device to record the 

trajectory data.  

Fig.4 The demonstration of upper limb rehabilitation 

motion 

Fig.5 Cortex Operation interface and distribution diagram 

of the 25 points which were fixed on each joint 
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Fig.5 illustrates a distribution diagram of the 25 

points which are fixed on each joint of the subject's body. 

In order to obtain the relative spatial coordinate 

locations of the joint points of the upper limb 

rehabilitation motion, the left arm joints S (shoulder), E 

(elbow) and W (wrist) of the subject are extracted. And 

3 moving points in the human foot and waist are also 

extracted for relative conversion of the world coordinate 

and the moving reference during the following data 

preprocessing. 

 

3. CLUSTERING OF THE REHABILITATION 

MOTION DATA 

After capturing the raw data from the subjects, in 

this section, the data sets are firstly pre-interpolated and 

processed to reduce the noises. Then, since the 

coordinates are measured in the fixed reference, we need 

to eliminate the effect of moving references so that the 

data is not impacted by the location and direction of the 

subjects. The three points on the subject’s foot and waist 

are used to establish the reference frame that follows 

each subject, and the coordinates of 3 points (S, E and 

W) on the upper limb are transformed into the 

representation in the reference frame. Suppose the world 

frame is {A} and the reference frame is {B}, then the 

homogeneous transformation matrix can be expressed as 

follows: 

 H�
� = Rot(Z, η)Rot(Y, δ)Rot(X, ε)Trs (1) 

 H�
� = �

R d
0 1

� , R ∈ SO(3) (2) 

 d = [dx, dy, dz]� (3) 

R represent the first 3 rows and 3 columns of the 

rotation matrix, which could be constructed as follow: 

 R = �

X�X�
� Y�X�

� Z�X�
�

X�Y�
� Y�Y�

� Z�Y�
�

X�Z�
� Y�Z�

� Z�Z�
�

� (4) 

where X� = [1 0 0], Y� = [0 1 0], Z� = [0 0 1] , and 

X�,Y�,Z� are the unit vector of X, Y and Z axis of {B} 

frame in {A}, respectively. 

Therefore, the location vector’s transformation 

relationship of any point P between the coordinate {A} 

and the coordinate {B} could be obtained as follow: 

 P� = H�
�P�, P� = (H�

�)��P� (5)

Through the above coordinate transformation, the 

coordinate of the upper limbs S, E and W in the 

reference frame of each subject’s torso are obtained. 

Therefore, the possible errors caused by location and 

direction of subjects in the world coordinate could be 

eliminated before the subsequent clustering and 

regression. 

 

3.1 Expansion of the database 

To improve the performance of clustering, it is a 

commonly adopted strategy to expand the database by 

separating one original set of data to multiple sets [20]. 

In our case, to expand the database, we uniformly 

sample 24 frames in a complete motion of about 120 

frames. Thus, the database is now expanded to 94 sets, 

wherein each sample data was 24×19 dimensions. The 

increase of number of frames also helps to reduce the 

computational cost of the algorithm. 

In order to further reduce the computational cost in 

the clustering process, the inverse kinematics equation 

is adopted. Instead of using the captured joint coordinate 

parameters directly to reflect the trend and pattern of the 

motion, we convert these information into the 

expression of angles between the upper limb and the 

torso. 

Fig.6 Main angle and coordinate setting of upper limb 

motion 

 

Fig.6 shows that the angle α and angle β, which 

represent the angle between forearm, arm and torso, 

where �� = [0,0, −1] represents the torso vector. 

 α = arccos
�� · ��

‖��‖‖��‖
 (6)

 β = arccos
�� · ��

‖��‖‖��‖
 (7)

Let us define a new variables:θ = α + βi to reflect 

the trend and pattern of the upper limb poses during the 

boating rehabilitation motion. Thus the computational 

complexity of the algorithm is now reduced from O 
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(94×120×19) to O (94×24×2) after the conversion from 

point coordinate to angle. It greatly reduces the storage 

capacity requirements of the training process during 

clustering algorithm, and could hereby improve the 

efficiency. 

 

3.2 Clustering of the motion and evaluation of 

the results  

Before the clustering of the 94 sets of motion data, 

it is necessary to determine the number of clusters. In 

this paper, we consider the characteristics of the boating 

motion data, and first obtain the optimal number of 

clusters based on k-means algorithm. The optimal 

cluster number is then obtained for spectral clustering 

(SC), hierarchical clustering (HC), self-organizing 

neural network (SOM) and Gaussian mixture model 

(GMM). Different numbers of clusters are set and 

substituted into the algorithm, and the performance of 

clustering quality could be compared based on the IASC

（Improved Average Silhouette Coefficient）: 

 IASC =
1

n
� �

b(k) − a(k)

max {a(k), b(k)}

��

���

�

���

 (8) 

where n is the total number of samples, c is the cluster 

number, n� is the number of samples in the i-th cluster. 

The a(k) is the distance between the k-th sample and its 

cluster’s centroid, and b(k) is the minimum distance 

between the sample and centroid the other c-1 clusters. 

Although the improved average silhouette coefficient 

has the same expression as the traditional silhouette 

coefficient, a(k) and b(k) do not require the repeated 

calculation of the distance between samples. From the 

IASC result shown in Fig.7, it could be seen that the 

optimal cluster number is 3. 

Fig.7 The IASC of different number of clusters based on k-

means clustering algorithm 

Next, the aforementioned 4 algorithms are 

implemented. Fig.8 presents the clustering results of 

them, and figure 9 shows their similarity matrix. From 

the regression results in the right ones of Fig.8, it could 

be noticed that starting point and ending point are not 

closed, which is because generally the subjects do not 

end exactly the same as the start. Through visual 

comparison of Fig.8 and Fig.9, we could observe that the 

SC and HC yields better clusters than SOM and GMM. 

To present a numerical analysis for the validity of these 

algorithms, the properties of the results are further 

investigated. 

In general, there are three approaches to investigate 

cluster validity. (1)External criteria, which means that 

the results of a clustering algorithm is evaluated based 

on a pre-specified structure imposed on a data set and 

reflects users’ intuition about the clustering structure of 

the data set. (2)Internal criteria, which indicates that we 

use the inherent features and magnitudes of the dataset 

to evaluate the clustering validity of a clustering 

algorithm, while the structure of the dataset and the pre- 

classification label are unknown. (3)Relative criteria, 

where a clustering structure is evaluated by comparing 

it with other clustering schemes by setting different 

parameters, and finally selecting the optimal parameter 

setting and clustering mode [21,22]. 

In this paper, the above 4 algorithms are 

sequentially evaluated by using internal criteria method, 

which is usually defined by cluster compactness and 

separation. 

Compactness: It indicates the average scattering 

within c clusters based on variance. A smaller value of 

this term is an indication of a better compact cluster. The 

definition is obtained as follows: 

 σ� =
1

n
�(θ� − θ�

�

���

)� (9)

 σ��
= �(θ� −

��

���

v�)
�/n� (10)

where θ� = abs(α + βi), n = 94, θ� = 1/n ∑ θ�
�
��� , v� 

and n� are respectively the center and the samples’ 

number of i-th cluster. So the Scat(c)  presents the 

average dispersion of all clusters. 
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Fig.8 The comparison of 4 clustering algorithms (left) as well as the regression of each clustering result (right) 

(a) SC 

(b) HC 

(c) SOM 

(d) GMM 
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Fig.9 The similarity matrix of 4 cluster algorithms 

 

 Scat(c) =
1

c
�‖σ�‖

�

���

/�δ��
� (11) 

where c is the number of clusters set in advance. 

Separation: It indicates the total separation between the c 

clusters such as an indication of inter-cluster distance. The goal 

is that the density among clusters should be lower in 

comparison with the density in the considered clusters. The 

definition is obtained as follows: 

 Dis(c) =
D���

D���
�(�‖v� − v�‖

�

���

)��

�

���

 (12) 

where D���=max(‖v� − v�‖) and D���=min (‖v� − v�‖) are 

respectively the maximum distance and minimum distance  

between any two clusters  (∀i,j {∈ 1,2,…c}). 

When Sat(c) and Dis(c) are not in the same order, k as a 

weighting factor can balance the influence to SD(c) as follows:  

 SD(c) = Scat(c) + kDis(c) (13) 

The smaller Scat(c)  indicates better compactness and 

the greater similarity of the upper limb rehabilitation 

trajectories in the same cluster. The smaller Dis(c) indicates 

better separation and greater difference of the upper limb 

rehabilitation trajectories which belong to different clusters. 

 

Table1 Clustering validity of different algorithms 

Clustering 

algorithm 

Scat(c) Dis(c) SD(c) 

SC 0.3570 0.4548 0.8118 

HC 0.3563 0.5052 0.8615 

SOM 0.3747 0.5277 0.9024 

GMM 0.5505 0.4053 0.9558 

 

Table1 shows the SD(c) of the 4 clustering 

algorithms. From the table it could be seen that spectral 

clustering algorithm’s SD(c) is the smallest, and it 

mostly have a better performance in compactness and 

separation compared with other algorithms. Therefore, 

considering the clustering quality, spectral clustering 

algorithm is adopted in our approach to cluster the upper 

limb rehabilitation trajectory data sets. 

The idea of spectral clustering algorithm comes 

from the theory of spectral partitioning. It constructs 

undirected weight maps based on eigenvalues between 

samples, and maps high-dimensional spatial data to low-

dimensional, which has unique advantages for 

processing non-convex data sets. Suppose each data 

sample is regarded as the point V in the graph, and the 

edge E between the points is weighted by the weight W 

according to the similarity between the samples, so that 

an undirected  weighted graph G = (V, E) is obtained 

based on the sample similarity. Then the clustering 

problem can be transformed into the graph partitioning 

problem on graph G. 

Adopting the spectral clustering method, we could 

describe the algorithm in this paper for the clustering of 

upper-limb rehabilitation data as follows: 

Input: data set θ = {θ�, θ�, … , θ�, … , θ��} and scale 

parameter σ=9. 

Output: cluster division C (c�, c�, … , c�, … , c�). 

a) Obtain the best cluster number c (c=3) from the 

clustering cluster adaptive algorithm. 

b) The similarity matrix A is constructed by a fully 

connected Gaussian kernel function, where A�� =

exp (−1/2��‖θ�−θ�‖�), ∀i, j ∈ {1,2, … 94}，if i =

j，A�� = 0; 

c) The sum of the elements of the i-th row of the 

similar matrix A is taken as the main diagonal 

element of the i-th row of the matrix D, and the 

matrix D is named the metric matrix, and the 

Laplacian matrix is constructed by it: L =

D��/�AD�/�. 

d) The 3 eigenvectors corresponding to 3 largest 

eigenvalues are obtained by solving matrix L, and 

construct the matrix X = [x�, x�, x�]  with 3 

eigenvectors. 

e) Normalize the row vector of matrix X to Y, 

where Y�� = X��/  (∑ X��
�). 
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f) Each row of the matrix Y is regarded as a sample of 

the space R3. The sample dimension is 94×3 and the 

eigenvectors are clustered by the k-means algorithm. 

g) The sample point θ� is divided into the c� cluster 

when the k-th line of the matrix Y is divided into the 

c�  cluster. It also indicates that the k-th subject's 

upper limb rehabilitation motion trajectory is 

classified into the c� cluster. 

In Fig.8 (a), we have already shown the cluster 

result of the spectral clustering algorithm for the data set 

θ. To actually obtain the pattern and trend for each 

cluster of rehabilitation motion, we still take the 3 points’ 

(shoulder joints S, elbow joints E and wrist joints W) 

spatial coordinates of each cluster generated by spectral 

clustering algorithm, and conduct a regression for each 

cluster of motion. Fig.10 shows the regression result of 

the S, E, W joints’ spatial trajectory of the three type of 

clusters in Fig.8 (a). It could be noticed that the shoulder 

joint trajectory is a small closed curve in all types of 

motion, which is generally treated as a fixed sphere joint 

in practical design cases. 

 

4. CONCLUSION 

This paper adopts clustering-based machine 

learning method to find a limited number of motion 

patterns for upper-limb rehabilitation, so that they could 

represent the large amount of motion of people who have 

various body parameters. After acquisition of 94 groups 

of rehabilitation motion data, 4 types of machine 

learning algorithms are implemented and compared. It is 

shown that spectral clustering algorithm yields the best 

performance and is hereby adopted to generate three 

clusters of motion patterns. After regression of each 

cluster, three types of motion for upper limb-

rehabilitation are constructed, and future work will 

include the design of associated rehabilitation 

mechanisms and the establishment of the institutional 

supervised learning model based on physical parameters 

which have be recorded. 
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Appendix: Coordinates for the elbow and wrist 

trajectories of the blue cluster 

Index Elbow Wrist 

1 [ -160.12, 44.009, 1071.1] [ -148.86, 190.19, 947.29] 

2 [ -154.27, 34.923, 1083.0] [ -154.48, 187.71, 982.99] 

3 [ -158.70, 33.887, 1092.9] [ -159.57, 191.31, 1027.6] 

4 [ -167.56, 41.237, 1102.1] [ -162.12, 201.02, 1075.3] 

5 [ -177.38, 55.813, 1111.5] [ -161.14, 217.13, 1125.2] 

6 [ -186.44, 77.343, 1122.1] [ -155.93, 238.71, 1172.4] 

7 [ -192.85, 104.09, 1133.8] [ -146.87, 263.78, 1212.8] 

8 [ -195.66, 133.45, 1145.7] [ -133.93, 292.37, 1246.3] 

9 [ -194.73, 165.34, 1157.7] [ -118.18,  322.1, 1269.6] 

10 [-190.04,  197.0, 1168.7] [ -101.28, 350.31, 1280.9] 

11 [ -182.37, 225.69, 1177.2] [ -83.503, 376.95, 1280.3] 

12 [ -172.08, 251.43, 1182.7] [ -66.698, 399.41, 1266.8] 

13 [ -160.38, 271.69, 1184.2] [ -52.604, 415.75, 1241.9] 

14 [ -148.74, 284.86, 1180.8] [ -41.495, 425.82, 1205.2] 

15 [ -137.57, 290.93, 1172.2] [ -34.809, 428.18, 1159.1] 

16 [ -128.33, 288.92, 1158.2] [ -33.158, 422.74, 1108.0] 

17 [ -122.07, 279.37, 1139.9] [ -36.564, 409.53, 1052.2] 

18 [ -119.04, 262.54, 1117.4] [ -44.822, 389.52,  997.6] 

19 [ -119.80, 240.16, 1092.9] [ -56.543, 365.28, 950.83] 

20 [ -124.09, 215.41, 1069.8] [ -70.726, 338.04, 915.08] 

21 [ -124.09, 215.41, 1069.8] [ -70.726, 338.04, 915.08] 

22 [ -130.33, 193.41, 1051.5] [ -81.442, 318.04, 902.71] 

23 [ -139.97, 171.41, 1046.6] [ -91.574, 298.04, 887.25] 

24 [ -146.64, 149.41, 1046.7] [ -103.31, 278.04, 887.62] 

25 [ -152.75, 127.41, 1047.4] [ -117.50, 258.04, 895.18] 

26 [ -157.81, 105.41, 1048.8] [ -131.20, 238.04, 905.75] 

27 [ -161.26, 83.409, 1050.9] [ -141.38, 218.04, 916.53] 

28 [ -162.55, 61.409, 1054.0] [ -145.47, 198.04, 925.02] 
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