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Abstract

Human Activity Recognition (HAR) using wearable devices such as smart watches

embedded with Inertial Measurement Unit (IMU) sensors has various applica-

tions relevant to our daily life, such as workout tracking and health monitoring.

In this paper, we propose a novel attention-based approach to human activ-

ity recognition using multiple IMU sensors worn at different body locations.

Firstly, a sensor-wise feature extraction module is designed to extract the most

discriminative features from individual sensors with Convolutional Neural Net-

works (CNNs). Secondly, an attention-based fusion mechanism is developed

to learn the importance of sensors at different body locations and to generate

an attentive feature representation. Finally, an inter-sensor feature extraction

module is applied to learn the inter-sensor correlations, which are connected to a

classifier to output the predicted classes of activities. The proposed approach is

evaluated using five public datasets and it outperforms state-of-the-art methods

on a wide variety of activity categories.
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1. Introduction

Human Activity Recognition (HAR) aims to automatically recognize various

human activities, such as daily life and sport activities, with algorithms using

the input of a series of sensor measurements. It has a wide range of applica-

tions, such as human-computer interaction, robot learning, ubiquitous comput-

ing, workout tracking, and health monitoring [1, 2, 3, 4]. Although HAR is not

a new emerging topic and has been studied for decades, it is still an active area

of research now because of remaining challenges, such as the high complexity of

human activities, the large variations among different subjects, and the balance

between the algorithm complexity and the energy efficiency.

Various sensors have been used for HAR. Considering the wearability, they

can be categorized as ambient sensors and wearable sensors. Ambient sensors

are deployed in the environment to sense the subject in a passive manner. For

example, optic cameras can be used to capture RGB images on human subjects;

Depth cameras such as a Microsoft Kinect or Lidar (light detection and ranging)

sensors can be applied to sense human objects in the 3D space; Infrared cameras

can detect the subject in a dark environment; Pressure sensing mats can be

used to capture human’s standing states; WiFi signals also have been used for

HAR [5]. Ambient sensing can collect a large amount of data without interfering

the subject’s activity.

Nevertheless, ambient sensors require complex setups and their performance

can be affected dramatically by occlusion issues, which are the main challenges in

implementing ambient sensing. Also, it becomes more difficult when capturing

a subject’s outdoor activities. To compensate for these limitations, wearable

sensing can be applied. Wearable sensor based activity recognition has captured

growing attention nowadays because of the pervasiveness of mobile devices (e.g.,

smart phones and smart watches), which are embedded with various sensors

such as IMU (Inertial Measurement Unit) sensors, heart rate sensors, and ECG

(Electrocardiogram) sensors. IMU sensors are the most used for HAR as the

sensor directly measure the movements of human body. Usually, an IMU has
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Figure 1: Overview of the human activity recognition pipeline using IMU signals.

multiple sensors in different modalities, such as an accelerometer, a gyroscope,

and a magnetometer, to measure the acceleration, angular rate, and magnetic

field, respectively.

In this paper, we focus on accurately recognizing human’s physical activities

with multiple IMU sensors considering that IMU signals from different locations

could augment the perception of human activities.

The pipeline of human activity recognition is illustrated in Figure 1. IMU

sensors are worn at different body locations to sense the activity, from which

a series of signals are captured and preprocessed to have formatted representa-

tions. After that, a feature extraction process is implemented to extract high-

level features. Then, the extracted features are fed into a classifier to generate

a probability distribution of activity classes. Finally, the activity label can be

inferred.

1.1. Related Work

The critical factor attributed to the success of IMU-based activity recogni-

tion is to seek an effective representation of the time-series IMU signals. The

most widely used approaches fall into two categories: handcrafted feature design

and automatic feature learning.

Hand-Crafted Feature Design. It is intuitive to manually pick statistical

attributes (e.g., means) or quantity distributions (e.g., magnitude histograms)

from IMU signals [6]. For example, Anguita et al. [7] designed as many as 341

features from 3-axis IMU signals while Hammerla et al. [8] preserved the statis-

tical characteristics of IMU data using their empirical cumulative distributions.
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Xu el al. [9] proposed a multi-level feature learning framework which consists

of the signal-based, components-based and sematic-based information for activ-

ity recognition. However, handcrafted feature design is mostly driven by the

domain knowledge, prior experience and experimental validation, thus it is pos-

sible to neglect some useful features in this manner. In addition, a pre-defined

feature extraction mechanism trained on a specific scenario might not work well

on other scenarios with different sets of activities to be recognized. That is,

those hand-crafted features in the literature might not be transferrable to new

application domains, which further makes the feature design time-consuming

and labor-costly.

Automatic Feature Learning. The drawbacks of handcrafted features

motivate researchers to explore automatic feature learning [10][11]. Deep Con-

volutional Neural Network (DCNN), as one of the most effective deep learning

models, attracts attentions in the mobile sensing domain considering it has

achieved the superior performance in other research fields such as computer vi-

sion [12] and speech recognition [13]. To improve the accuracy of sensor-based

activity recognition, Zeng et al. [14] designed a tri-thread DCNN architec-

ture with the three inputs corresponding to the tri-axis accelerometry data,

thus the inputs are one-dimensional time-series signals. To enhance the ability

for feature learning, Duffner et al. [15] and Ha et al. [16] took as input the

two-dimensional matrix obtained by stacking IMU signals. In order for further

accuracy improvement, Ravi et al. [17] combined features learned from the deep

model with complementary information from a set of hand-crafted features. In

addition, Lane et al. [18] looked into this problem in a practical way and showed

the application of deep learning to mobile sensing domain is hardware-efficient

and can scale up to a large number of inference classes.

In short, the input to the deep network and the architecture of the deep

model itself are two key factors to the success of automatic feature learning.

The input is of great significance because a good representation of the IMU

signals can make it easier for automatic learning. In the previous work, IMU

signals are directly fed into the DCNN architecture and this simple and raw
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input may not be a good representation of IMU signals because each value of

the raw time-series signals is less meaningful if we do not consider the statisctic

property of the whole signals.

In terms of the design of deep architecture, the aforementioned simple input

restricts the depth of the deep model, limiting the capability to find discrimina-

tive features. For instance, the input in [19] is a small 3× 30 matrix and there

are only two convolutional layers in the architecture. Additionally, the tri-axis

accelerometry signals are convolved with one-dimensional kernels in the deep

model independently, thus the correlation among different signals is not taken

into enough consideration.

Self-Attention Mechanisms. Just like humans can allocate different

amount of attention to different aspects when performing a complex task, self-

attention mechanisms can model attentions for deep neural networks and have

been widely applied in many deep learning tasks [20]. The self-attention mech-

anism is proposed in [21] for machine translation tasks, in order to distribute

different attention over words in a sentence. From then on, attention mecha-

nisms have been increasingly popular in natural language processing (NLP) and

computer vision fields, where multiple sources with different importance are in-

volved. For example, Chen et al. [22] uses spatial and channel-wise attention

for image captioning, and He et al. [23] applies attention in both the spatial and

temporal domains for HAR from videos.

1.2. Our Proposal

A single IMU sensor1 collects data only from a specific body location, which

may not perform the robust perception under various circumstances, such as

when an activity involves multiple body parts or the movements are not captured

from the location the IMU is worn. Intuitively, multiple IMU sensors have been

used to integrate the perception of individual sensors at different body locations

1An inertial measurement unit (IMU) can include multiple sensors, such as accelerometers,

gyroscopes and magnetometers, here we treat an IMU as an integrated ‘sensor’ for simplicity.
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Figure 2: Overview of our attention-based approach for human activity recognition.

for a better understanding of the overall activity.

Traditional methods treat different IMU sensors equally. Few attempts have

been made to take the importance of different sensors into consideration when

developing HAR algorithms, which cannot provide the correct ‘attention’ on

IMU sensors for different activities. In the present research, to achieve a better

understanding of how different sensors contribute to the recognition tasks, we

focus on the automatic importance learning for fusing sensors at different body

locations.

An overview of our approach is illustrated in Figure 2. IMU signals are

captured from multiple sensors worn at different body locations. Firstly, the

signals are preprocessed to generate representations in the frequency domain.

Secondly, for a sensor at a certain body location, we design a sensor-wise feature

extraction module to extract the most discriminative features of signals from

each individual sensor. Thirdly, an attention-based fusion mechanism is devel-

oped to learn the importance of sensors at different locations and to generate

an attentive feature representation. Finally, an inter-sensor feature extraction

module is applied to learn the feature relationships among sensors at different

locations, which is connected to a classifier to output the predicted classes of

activities. To evaluate our method, five publicly available datasets are cho-

sen which contains a wide variety of activity categories, such as daily activities

(sitting, standing, vacuum cleaning, etc.), sports activities (cycling, running,
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playing basketball etc), and car maintenance activities (opening the hood, etc).

The main contributions of this study are as follows:

• Overall, we propose an attention-based approach for human activity recog-

nition using Inertial Measurement Unit (IMU) signals. Multiple IMU sen-

sors are used to perceive the activities and the importance of each individ-

ual sensor is automatically learned to achieve an optimal understanding

of the human’s activities.

• Regarding to the IMU sensor signal representation, we design a simple

yet effective feature transform method to represent the input signals as

images in the frequency domain.

• Regarding to the attention mechanism, we develop a sensor-wise attention

module, which enables the network to emphasize features from specific

sensors depending on the signals. For fusion purpose, multi-kernel con-

volutional neural networks are applied to extract the most discriminative

sensor-wise and inter-sensor features.

• Regarding to the experimental validation, our approach outperforms other

methods on all of the chosen five public datasets.

The remainder of this paper is organized as follows. Section 2 discusses the

details of our proposed approach. Experimental results on five public datasets

are described in Section 3, including comparison with the state-of-the-art meth-

ods, and the visualization of the results. Finally, Section 4 provides the conclu-

sions of this study.

2. Methods

In this section, we first present the methods for data preprocessing and

representation. Then, each module of our model is explained, including the

sensor-wise feature extraction module, sensor attention mechanism, inter-sensor

fusion module, and classification module. After that, the training information

is detailed.
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2.1. Signal Preprocessing and Representation

Deep neural networks (DNN) need the input data to be converted as format-

ted tensors, for example, with a fixed size of h×w× c for image inputs where h,

w and c are the height, width and the number of channels of the image, respec-

tively. Therefore, some preprocessing steps are necessary before the data can

be fed into a DNN. In this section we give a detailed description of the pipeline

for data preprocessing and the methods we use for signal representation.

Sampling Procedures. As depicted in Figure 3, the IMU signals from

sensors at different body locations are synchronized with the timestamps and

denoted as signal sequences. Then, the signal sequences are sampled using a

temporal sliding window with the width of T timestamps and ∆t stride length

between two windows.

After sampling, we denote our dataset as D = {[D1, y1], · · · , [Dn, yn], · · · , [DN , yN ]}

and the nth data is represented as

Dn = [d1n, d
2
n, · · · , dsn, · · · , dSn ], n ∈ {1, · · · , N} (1)

where S is the total number of IMU sensors at different body locations, dsn is a

sample set of discrete time-series IMU signals from the sth sensor, and yn is the

manually labeled ground truth of the activity class. More specifically, dsn a se-

quence of discrete-time data over T timestamps, dsn = {dsn,1, · · · , dsn,t, · · · , dsn,T },

and each element is elaborated as

dsn,t = [ axn,t, a
y
n,t, a

z
n,t︸ ︷︷ ︸

an,t: acceleration

, gxn,t, g
y
n,t, g

z
n,t︸ ︷︷ ︸

gn,t: gyro

, mx
n,t,m

y
n,t,m

z
n,t︸ ︷︷ ︸

mn,t: magnetometer

, · · · ], t ∈ {1, · · · , T},

(2)

where a, g, andm are sensor readings of linear acceleration, angular velocity, and

magnetic field, respectively. In some public datasets, derived information such

as gravity-removed linear acceleration and orientation in Euler or quaternion

form, is also included.
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Signal Representation. Analyzing signals in the frequency domain is

commonly used for signal pattern recognition, because it can extract periodic

characteristics which can be more representative than original signals in the time

domain. In our study, rather than directly modeling the time-series signals with

a DNN, frequency transform is applied as follows: 1) As shown in Figure 4, a

signal segment dn (Fig. 4(b), for simple notation, we drop the superscript s

that indicates the sth sensor, in the following derivation) is sampled from a

signal sequence (Fig. 4(a)); 2) A modality-wise normalization is applied to dn

to normalize the signal to the range of [0, 1], generating d̃n (Fig. 4(c)). 3) After

normalization, the IMU signal dn in an IMU segment is represented as an image

In with the size of C × T (Fig. 4(d)) where C and T denote the numbers of

channels and time frames, respectively, resulting in S image representations

for all sensors; 4) One-dimensional Discrete Fourier Transform (DFT) along

the time dimension is applied to In to get the representation in the frequency

domain for analyzing the frequency characteristics. Its logarithmic magnitude

is taken to form the image IDFT
n . Due to the conjugate symmetry of Discrete

Fourier Transforms

IDFT
n (k, c) = IDFT

n (−k, c) , (3)

where k and c represent the two directions (i.e., frequency and signal channel,
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respectively) of an image IDFT
n , we can use only a half to represent the DFT

image. In the following, we keep using the notation IDFT
n to represent the

one-half of DFT image for simplicity (Fig. 4(e)).
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Figure 4: Illustration of the signal representation pipeline for an individual IMU sensor.

Compared with the previous work [10, 24] for signal representation, our

method removes the information redundancy, thus reducing the architectural

complexity and the number of training parameters for the DNN model.

In total, we have S image representations in the frequency domain for each

activity segment. For example, five sensors are included in the Daily dataset [25],

i.e., S = 5. Figure 5 shows some examples of image representations in the

frequency domain, from one subject on 19 activities, from which we can observe

the unique patterns of each activity.
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2.2. Sensor-Wise Feature Extraction Module

After the above preprocessing step, we have formatted the input ready for

DNN. There are N training data samples {X1, · · · , XN}, each of which contains

S sensor inputs:

Xn = {I1n, · · · , Isn, · · · , ISn }, n ∈ [1, N ] (4)

For each of the image inputs Isn, 2D convolutional operation [26] is applied

to extract features layer by layer. The convolutional value using a 2D kernal K

at the position (i, j) in the feature map of the lth layer is computed by

F l
i,j = (F l−1 ∗K)i,j =

P−1∑
p=0

Q−1∑
q=0

F l−1
i+p,j+pKp,q (5)

where l is the layer index, Kp,q is the value at the position (p, q) of the kernel, and

P and Q are the height and width of the two-dimensional kernel K, respectively.

To learn the hidden correlation patterns among multi-channel signals for

each individual sensor, we design an intra-sensor feature extraction module.

The motivation is to use multiple convolution kernels with various sizes to detect

features across different signal channels. As shown in Figure 6, for the input of

the sth sensor, 1× 3 kernels are used to look at the channel-wise feature, 3× 3

kernels are designed to detect the inter-channel features among three channels,

and 5 × 5 kernels are used to discover the inter-channel pattern in a larger
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perceptive field. In addition, larger size kernels, such as 7× 7 and 9× 9 can be

used to further look into the signals in a larger field.
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After each convolutional layer, a batch normalization layer [27] and an acti-

vation layer of ReLU (Rectified Linear Unit) are applied. Then, these extracted

feature maps are concatenated to form an information-richer feature set con-

taining features across different signal channels. Finally, the extracted feature

maps from each sensor is flattened as a vector representation fs, which we call

a ‘sensor vector’ in the following derivations.

2.3. Sensor Attention Mechanism

The sensor-wise feature extraction of signals treat every IMU sensor indis-

criminately, but sensors at some body locations may be not or less effective to

represent a certain activity and discriminate it from others. For example, a

sensor worn on the ankle may not be able to effectively perceive the ‘rowing’

activity. Thus, we propose a sensor attention mechanism to learn more atten-

tions on those discriminative sensors in a signal segment. This sensor attention

is a trainable layer inside a DNN, which pools the most discriminative features,

as shown in Figure 7.
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Given the sensor-wise feature representation of a signal segment, F = {f1, f2,

· · · , fs, · · · , fS}, fs ∈ RL×1, (where L is the vector dimention and each feature

vector is extracted from a sensor within a signal segment), our attention module

learns an attention score vector, a, which indicates the feature importance of

different sensors within the signal segment:

a = Fw,a ∈ RS×1, (6)

where w ∈ RL×1 is the weight. Then, the activation vector â is calculated as

â = tanh(Wa + b), (7)

where W is a weight matrix and b is a bias vector.

After the activation process, we have a set of attention score â = {a1, a2, · · · ,

as, · · · , aS}. Then, the attention score vector is passed through a softmax layer:

assoftmax =
exp(as)∑S
s=1 exp(as)

(8)

to get âsoftmax ∈ [0, 1]S×1. Then, the attention-applied feature map F̂ of the

data segment is computed by

F̂ = F � âsoftmax, F̂ ∈ RS×L (9)
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where � is the element-wise multiplication operator. Here each sensor (each

row in F̂ ) has its corresponding attention-applied feature vector f̂ .

Overall, the proposed sensor attention mechanism fuses inputs from multiple

sensors into a single representation by assembling the weighted sensor vectors

from individual sensors into a 2D feature map, which enables the network to

distribute different amount of attention over different sensors.

2.4. Inter-Sensor Fusion Module

As shown in Figure 2, after the attention mechanism is applied, each row of

the feature map comes from each individual sensor. The attentive feature map

has the size of S×L (number of sensors×dimension of each sensor vector).

To discover the hidden correlations among different sensors. An inter-sensor fu-

sion module is developed. This module essentially follows the same architecture

as presented in Section 2.2. By using the 2D convolution, the correlation among

sensors can be learned.

2.5. Classification Module

As shown in Figure 2, a classification module is designed after the inter-

sensor fusion module. First, the feature map obtained from the inter-sensor

fusion module are flattened as a feature vector. To solve the classification prob-

lem, the vector is further input to a multi-layer neural network. The value of

the jth neuron in the ith fully connected layer, denoted as vij , is given by

vij = g

(
bij +

K(i−1)−1∑
k=0

wijkv(i−1)k

)
, (10)

where bij is the bias term, k indexes the set of neurons in the (i − 1)th layer

connected to the current feature vector, wijk is the weight value in the ith layer

connecting the jth neuron to the kth neuron in the previous layer.

The last fully connected layer is used to densify the feature vector to the

dimensions of M , where M is the number of activity classes. Then this M -

dimensional score vector s([s1, ..., sm, ..., sM ]) is transformed to output the pre-
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dicted probabilities with a softmax function as follows:

P (yn = m|Xn) =
exp(sm)∑M
j=1 exp(sj)

(11)

where P (yn = m|Xn) is the predicted probability of being class m for sample

Xn.

2.6. Training

The process of training a DNN model involves optimization of the network’s

parameters θ to minimize the cost function for the training dataset X. We select

the commonly used regularized cross entropy [26] as the cost function for the

classifier, which is

L(θ) =

N∑
n=1

M∑
m=1

ynm log[P (yn = m|Xn)] + λl2(θ) (12)

where ynm is 0 if the ground truth label ofXn is themth label, and is 1 otherwise.

The l2 regularization term is appended to the loss function for penalizing large

weights, and λ is its coefficient.

3. Experiments

In this section, we first describe the selected public datasets and evaluation

metrics. Then, we perform evaluation of our proposed approach using these

datasets, and compare with the state-of-the-arts. After that, we conduct visu-

alizations for a better understanding of the learned attention. Finally, future

research needs are discussed.

3.1. Datasets

As summarized in Table 1, we selected five publicly available datasets for

the method validation. These datasets are collected in various contexts by dif-

ferent research groups, including different sensor positions on the human body,

different sampling rates, and different numbers of subjects. In addition, the

five datasets include activities with different levels of classification difficulties,
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for example, the relatively more discriminative activities [28] such as walking,

sitting, and complex activities in special scenarios such as the manipulative

gestures performed in a car maintenance workshop [29]. Figure 8 shows the

senor locations on a human body for the five datasets. By leveraging these five

different datasets, we are able to test the effectiveness and robustness of our

approach.

Table 1: Information of the five public datasets.

Datasets #Sensors Modalities Number of

Channels

Rate

(Hz)

Number of

Activities

Number of

Subjects

Daily [25] 5 A,G,M 9 25 19 8

Skoda [29] 10 A 3 98 10 1

PAMAP2 [30] 3 A,G,M 9 100 12 9

Sensors [28] 5 A, Ā,G,M 12 50 7 10

Daphnet [31] 3 A 3 64 2 10

Note: A, Ā,G,M represent the modalities of acceleration, gravity-removed acceleration, angular

velocity, and magnetic field, respectively.

Daily Skoda PAMAP2 Sensors Daphnet

Chest

Right 
Wrist Left 

Wrist
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Left 
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Right 
Upper Arm

Right 
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Left 
Pocket

Right 
Pocket

Waist Waist

Left 
Leg

Lest 
Ankle

Right Arm

Figure 8: Worn locations of the five datasets (Daily [25], Skoda [29], PAMAP2 [30], Sen-

sors [28], and Daphnet [31]).

Daily and Sports Activity Dataset [25] This dataset is composed by

IMU data of 19 daily and sports activities ((1) sitting, (2) standing, (3-4) lying

on the back and on the right side, (5-6) ascending and descending stairs, (7)

standing in an elevator still, (8) moving around in an elevator, (9) walking in
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a parking lot, (10-11) walking on a treadmill with a speed of 4 km/h (in flat

and 15 deg inclined positions), (12) running on a treadmill with a speed of 8

km/h, (13) exercising on a stepper, (14) exercising on a cross trainer, (15-16)

cycling on an exercise bike in horizontal and vertical positions, (17) rowing, (18)

jumping, (19) playing basketball.), captured by five IMU devices (worn on the

torso, right arm, left arm, right leg, and left leg, respectively), and the activities

are performed by 8 different subjects.

Skoda Dataset [29] This dataset contains 10 manipulative activities per-

formed in a car maintenance scenario by a single subject (e.g., the user blocks

an opened hood with a stick, and the user grabs the steering wheel and turns

it). The dataset has signal recordings from both the left and right arms but

they are not synchronized for validation. Therefore, in this study, we focus on

signals from 10 sensors worn on the subject’s right arm.

PAMAP2 Dataset [30] This dataset has 12 human activities ((1) lying, (2)

sitting, (3) standing, (4) walking, (5) running, (6) cycling, (7)Nordic walking,

(8) ascending stairs, (9) descending stairs, (10) vacuum cleaning, (11) ironing

and rope jumping) captured by three IMU sensors (worn on the wrist, chest and

ankle, respectively), and the activities are performed by 9 different subjects.

Sensors Activity Dataset [28] This dataset includes 7 human activities

((1) biking, (2) downstairs, (3) jogging, (4) sitting, (5) standing, (6) upstairs,

and (7) walking) captured by five IMU sensors (one in the the right jeans pocket,

one in the left jeans pocket, one on the belt position towards the right leg using

a belt clip, one on the right upper arm, one on the right wrist), and the activities

are performed by 10 different subjects.

Daphnet Freezing of Gait Dataset [31] This dataset contains 3 wear-

able wireless acceleration sensors at the hip and leg of Parkinson’s disease pa-

tients that experience freeze of gait (FoG) during walk tasks. This dataset has

two classes, FoG and ‘no freeze’, captured by three sensors (worn at the ankle

(shank), on the thigh just above the knee, and on the hip, respectively), and

the activities are collected from 10 different patients.
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3.2. Evaluation Metrics

Regarding to evaluation metric, the leave-one-out evaluation policy is con-

ducted. In the leave-one-out evaluation, the samples from Nsubject − 1 out of

Nsubject subjects are used for training, and the samples of the left one sub-

ject are reserved for testing. We employ several commonly used metrics [26] to

evaluate the classification performance, which are listed as follows:

• Accuracy

Accuracy =

∑N
n 1(ŷn = yn)

N
(13)

• Precision and Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(14)

• F1 score

F1 = 2 · Precision ·Recall
Precision+Recall

(15)

where 1(·) is an indicator function. For a certain class yi, True Positive (TP)

is defined as a sample of class yi that is correctly classified as yi; False Positive

(FP) means a sample from a class other than yi is misclassified as yi; False

Negative (FN) means a sample from the class yi is misclassified as another ‘not

yi’ class. F1 score is the harmonic mean of Precision and Recall, which ranges

in the interval [0,1].

3.3. Implementation Details

The DNN architectures described in Section 2 are constructed using Ten-

sorFlow [32] and Keras libraries. The SGD optimizer is used in training, with

the momentum of 0.9, the learning rate of 0.001 and the regularizer coefficient

of 1e-5. We use a workstation with one 12-core Intel Xeon processor, 64GB of

RAM and two Nvidia Geforce 1080 Ti graphic cards for the training jobs.
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3.4. Evaluation of Different Signal Representation Methods

To evaluate how the design of signal representation affects the model perfor-

mance, comparisons have been made among methods using images of (1) raw

signals (IRS), (2) Discrete Cosine Transform (IDCT ), and (3) Discrete Fourier

Transform (IDFT ). Table 2 shows the performance of activity recognition with

various designs of input images.

Table 2: Performance (%) comparison of different signal representation methods

on the Daily dataset.

Methods Input Size Accuracy Precision Recall F Score

IRS C × T 67.57 64.50 67.57 61.78

IRS (DCT )
−−−−→

IDCT C × T 90.36 91.85 90.36 89.44

IRS (DFT )
−−−−→

IDFT C × (T/2) 90.37 91.86 90.37 89.82

Note: IRS , IDCT and IDFT represent image representations of raw signals,

DCT and DFT, respectively. C and L denote the number of signal channels

and the number of time frames in a signal segment, respectively.

The proposed signal representation method IDFT achieves the highest recog-

nition performance. The performance decreases when we use the image of raw

signals IRS directly or replace the Discrete Fourier Transform with the Discrete

Cosine Transform (IDCT ). Therefore, IDFT is selected for the signal represen-

tation. Another reason for choosing DFT over DCT is that DFT is symmetric,

and only half the image size after remove its symmetric part, which will reduce

the complexity of the DNN model and has a better computational efficiency. It

saves 50% of the first-layer computation over a DCT.

3.5. Evaluation of the Length of the Signal Segment

When sampling the signals (the sampling procedure is discussed in Sec-

tion 2.1), as shown in Figure 3, there are two parameters to choose, the length

of the segment (T ) and the stride (∆t), which determine how much information

the model can digest at each time, and how much shared overlap between two

segments, respectively. Here the question is what should be the optimal length
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and stride for sampling to identify an activity. Table 3 presents the performance

comparison of different settings of length and stride evaluated on the validation

dataset.

Table 3: Performance (%) comparison of different settings of

segment length and stride on the Daily dataset.

Length stride Accuracy Precision Recall F Score

32 8 92.39 93.62 92.39 91.55

32 16 92.37 93.74 92.37 91.91

32 24 90.07 91.31 90.07 89.06

64 16 90.37 91.86 90.37 89.82

64 32 86.63 88.47 86.63 85.24

96 24 89.11 90.87 89.11 88.23

125 –* 85.43 87.83 85.43 84.11

*Since the sequence length of the Daily dataset is 125, the

stride value is absent in the last row.

The accuracy decreases when increasing the segment length, because longer

length could have multiple repeated patterns in each segment, which makes it

harder for the DNN model to learn the most discriminative features. Also, longer

segment length leads to less segments, i.e., less training data, which affects the

training effect. In terms of stride, short strides can have better performance.

This is because the model tends to look into the data more precisely with a

shorter stride. Therefore, we choose the parameter setting, T = 32 and ∆t = 8,

for the following experiments.

3.6. Evaluation of the Effectiveness of the Fusion Mechanism

In terms of data fusion, as shown in Figure 2, the information flows are fused

at two places: fusion of multi-channel data of a specific sensor in the sensor-wise

feature extraction module (Sections 2.2) and fusion of multi-sensor data in the

inter-sensor feature extraction module (Section 2.4). The fusion mechanism is

realized using convolutional operations with different receptive fields, i.e., 2D

kernels of different sizes. When a 2D kernel moves over an area, the hovered
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information is fused with the summation of point-wise multiplications. Here to

validate the effectiveness of the fusion mechanism, we compare it with a method

using 1D convolutions which does not include fusion functionalities. The results

are listed in Table 4. We can see that, the performance drops dramatically after

ignoring the fusion, which demonstrates the the designed fusion mechanism

plays a vital role in identifying an activity.

Table 4: Performance (%) evaluation of the effectiveness of the fusion mech-

anism.

Method Accuracy Precision Recall F Score

Without Fusion Mechanism* 62.95 63.99 62.95 58.73

With Fusion Mechanism 92.37 93.74 92.37 91.91

* 1D convolutions along each row of the feature maps to ignore the fusion

mechanism.

3.7. Evaluation of Different Fusion Methods

In this experiment, we compare our attention-based fusion method with

two other fusion methods (early fusion and late fusion), whose architectures are

presented in Figure 9.

Early fusion fuses information in the input phase. As shown in Figure 9(a),

all the S inputs are stacked to generate a single input with the size of C×(T/2)×

S. Then, the integrated input is fed into a DNN model.

Late fusion fuses information in the inference phase. As shown in Fig-

ure 9(b), all the S sensor inputs are learned by different DNN models individ-

ually. Then, their inferred output probabilities are fused to generate a final

output.
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Figure 9: Architectures of different fusion methods: (a) early fusion and (b) late fusion.

The performance comparison of different fusion methods is listed in Table 5.

For early fusion, the inputs are integrated before feature extraction modules of

the DNN model, which lacks individual understanding of signal from each sensor.

Later fusion relies on individual sensor to learn the features and achieves higher

performance, but it doesn’t have the ability to look into the deep correlations

among different sensors as attention fusion does. Overall, the attention fusion

achieves the best results.

Table 5: Performance (%) comparison of different fusion methods.

Method Accuracy Precision Recall F Score

Early Fusion 89.62 90.63 89.62 88.86

Late Fusion 91.57 92.30 91.57 90.43

Attention Fusion 92.37 93.74 92.37 91.91

3.8. Comparison with the State-of-the-Art Methods

In this subsection, we compare our results with the state-of-the-art per-

formance on the five public datasets. The comparison is summarized in Ta-

ble 6. We also evaluate our model without the attention mechanism, in which

the sensor attention module is removed. Overall, our proposed model achieves

higher accuracy than the other methods, which is attributed to two factors: a

more effective signal representation method exposing the hidden patterns and an

attention-based sensor fusion model extracting the most discriminative features.

Figure 10 shows the normalized confusion matrix of the Daily dataset. We

can see that most of the activities are successfully classified. Failures occur in
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Table 6: Performance (%) comparison of existing models on the five public datasets. ‘–’

denotes that the value is not reported in the paper.

Approach Daily Skoda PAMAP2 Sensors Daphnet

Zhang et al. (2015) [33] 90.60 – – – –

Hammerla et al. (2016) [34] – – 93.70 – 76.00

Ordóñez et al. (2016) [35] – 95.80 – – –

Guan et al. (2017) [36] – 92.40 85.40 – –

Xi et al. (2018) [37] – – 93.50 – –

Murahari and PIötz (2018) [38] – 91.30 87.50 – –

Zeng et al. (2018) [39] – 93.81 89.96 – 83.73

Cao et al. (2018) [40] 78.48 – – – –

Moya Rueda et al. (2018) [41] – – – 93.68 –

Mohammad et al. (2018) [42] – 91.20 – – –

Shakya et al. (2018) [43] – – – 99.16 –

Xu et al. (2019) [44] – – 93.50 – –

Our model without attention 88.55 94.16 93.14 97.36 89.81

Our model with attention 92.37 95.84 94.85 99.27 91.02

classifying the confusing groups: e.g., (1) sitting, lying on the back, and lying on

the right side; (2) standing, standing in the elevator, and moving in the elevator;

(3) treadmill walking in flat position and treadmill walking in 15 deg inclined

position. By reviewing the failure cases, we find that the high similarity within

the confusing groups makes it difficult to distinguish them from others, and the

significant subject-wise difference for the same activity makes it difficult to learn

this kind of unseen variations beforehand.
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Figure 10: Normalized confusion matrix of the Daily dataset.

3.9. Visualization of the Learned Sensor Attention

In this section, we analyze and visualize the learned attention, i.e., attention

weights, of sensors at different body locations. The attention vector âsoftmax

(Eq. 8) is extracted from a well-trained model and each element of this vector

is represented as a heatmap. A few examples of the sensor attention trained on

the Daily dataset are shown in Figure 11, where ‘hotter’ colors represent larger

values while ‘colder’ colors represent smaller ones on the blue-red heatmaps.

We can see that different activities shows different attention distributions. For

example, the ‘rowing’ activity has larger attention weights for sensors worn on

the arms, because the motion intensities of the arms are larger than other body

parts. While for activities such as ‘running’, ‘jumping’, and ‘playing basketball’,

the attention is more evenly distributed across different sensors, because these

activities involve the whole body. This visualization shows that our model is able
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to focus on the critical body parts based on their importance when identifying

activities.

Attention Weight

0.5

Standing Lying on 
Right Side

Ascending 
Stairs

Treadmill 
8km/h Run

Cycling 
Vertically Rowing Jumping Playing 

Basketball

Torso
Right Arm 
Left Arm

Right Leg
Left Leg

Figure 11: Examples of the importances of sensor at different body locations. The heatmaps

represent the importance and the attention weights of all sensors are illustrated in the lower

barchart.

3.10. Visualizing the Class Activation Map

To have a more intuitive understanding of which regions of an input image

are more discriminative to activate our model to its final inference, we visualize

the class activation map (CAM), which is a 2D grid of scores associated with a

specific output class, computed for every region in an input image, indicating

the importance of each region in regard to the class under consideration. A set

of CAM examples are shown in Figure 12, where the generated heatmaps are

overlaid onto the input images. We can see that the model automatically learns

the most discriminative regions in an input image and different activities use

different regions (i.e., different signal channels and frequency characteristics) in

identifying their categories.

4. Conclusions and Remarks

In this paper, we propose a novel approach of attention-based sensor fu-

sion for Human Activity Recognition (HAR) using Inertial Measurement Unit

(IMU) signals obtained from multiple sensors worn at different body locations.

For signal representation, a simple yet effective pipeline for feature transform is
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Figure 12: Examples of Class Activation Map (CAM) Visualization. (Best in color)

designed to represent the input signals of each sensor as images in the frequency

domain. Having the formatted images as inputs, a sensor-wise feature extraction

module is developed to extract the most discriminative features of signals from

individual sensors with Convolutional Neural Networks (CNNs), and to gener-

ate a vector representation for each sensor. Then, a sensor attention mechanism

is developed to learn the importance of sensors at different body locations and

to create an attentive feature representation. After that, an inter-sensor fea-

ture extraction module is applied to learn the inter-sensor correlations, which

are connected to a classifier to output the predicted classes of activities. This

attention-based model is able to learn the importance of sensors at different

body locations, yielding a more comprehensive understanding of the human ac-

tivity. The proposed approach is evaluated on five publicly available datasets

and it demonstrates superior performance than the state-of-the-art methods.

To further improve the current approach for higher performance and prac-

tical applications, some directions for future study can be considered, such as

exploring data augmentation techniques to introduce more variations to the col-

lected data, experimenting other methods of signal preprocessing and represen-

tation to fully exploit the discriminative information within the recorded signals,

and developing channel-wise attention mechanism to look into the importance

of each individual channel for a sensor at a specific location. In addition, cross-

dataset recognition approach can be explored.
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